K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2021

Bạn tự vẽ hình nha

a, Gọi \(O=BD\cap AC\)

K là trung điểm của CD

\(\Rightarrow OK=\dfrac{1}{2}AD=\dfrac{1}{2}CD=5\)

b, \(S_{xq}=\left(AB+BC\right).SK\)

\(=\left(10+10\right).13\)

\(=260\left(cm^2\right)\)

c, \(V_{S_{ABCD}}=\dfrac{1}{3}.SO.SB.SC\)

\(=\dfrac{1}{3}.12.10.10\)

\(=400\left(cm^3\right)\)

-Chúc bạn học tốt-

16 tháng 5 2023

bạn thiếu r nè, chưa tính SO 

 

30 tháng 10 2023

Chu vi đáy là:

8*4=32(cm)

Diện tích xung quanh là:

\(32\cdot10=320\left(cm^2\right)\)

9 tháng 6 2018

9 tháng 5 2018

Sxq=16*4*17/2=544cm2

Stp=544+16^2=800cm2

V=1/3*16^2*15=1280cm3

31 tháng 7 2023

Nữa chu vi đáy của hình chóp đều:

\(16\cdot4:2=32\left(cm\right)\)

Diện tích xung quanh của hình chóp đều:

\(S_{xq}=32\cdot17=544\left(cm^2\right)\)

Diện tích mặt đáy của hình chóp đều:

\(S_đ=16^2=256\left(cm^2\right)\)

Diện tích toàn phần của hình chóp đều:

\(S_{tp}=S_đ+S_{xq}=544+256=800\left(cm^2\right)\)

Thể tích của hình chóp đều:
\(V=\dfrac{1}{3}\cdot256\cdot15=1280\left(cm^3\right)\)

16 tháng 5 2017

13 tháng 10 2018

18 tháng 10 2023

loading...

Trong hình chóp tứ giác đều, đường cao kẻ từ đỉnh xuống đáy có chân đường cao là tâm của đáy và đường cao đó chính là trung đoạn của hình chóp

a: Vẽ SO\(\perp\)(ABCD)

=>SO là trung đoạn của hình chóp ABCD và O là tâm của hình vuông ABCD

=>O là trung điểm chung của AC và BD

ABCD là hình vuông

=>\(AC=BD=\sqrt{4^2+4^2}=4\sqrt{2}\left(cm\right)\)

=>\(AO=BO=CO=DO=\dfrac{4\sqrt{2}}{2}=2\sqrt{2}\left(cm\right)\)

SO vuông góc (ABCD)

=>SO vuông góc OD

=>ΔSOD vuông tại O

=>\(SO^2+OD^2=SD^2\)

=>\(SO^2=6^2-8=28\)

=>\(SO=2\sqrt{7}\left(cm\right)\)

b: \(S_{Xq}=p\cdot d=C_{đáy}\cdot SO=4\cdot4\cdot2\sqrt{7}=32\sqrt{7}\left(cm^2\right)\)

c: \(S_{tp}=S_{xq}+S_{đáy}\)

\(=32\sqrt{7}+4^2=32\sqrt{7}+16\left(cm^2\right)\)

26 tháng 10 2023

Diện tích xung quanh hình chóp là:

$\dfrac12\cdot(4\cdot10)\cdot13=260(cm^2)$

Vậy diện tích xung quanh hình chóp là $260$ cm2.