cho đẳng thức :49/1+48/2+47/3+...+2/48+1/49=50A
hãy chứng tỏ rằng A không phải là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
1/49 + 1 = 50/49
2/48 + 1 = 50/48
3/47 + 1 = 50/47
.
.
.
47/3 + 1 = 50/3
48/2 + 1 = 50/2
0 + 1 = 50/50
Cộng vế theo vế dãy đẳng thức trên ta được:
1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50/2 + 50/3 + 50/4 +........+ 50/49 + 50/50
⇒ 1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50 x (1/2 + 1/3 + 1/4 +........+ 1/49 + 1/50)
⇒ B = 50A
⇒ A/B = 1/50
Ta có:
1/49 + 1 = 50/49
2/48 + 1 = 50/48
3/47 + 1 = 50/47
.
.
.
47/3 + 1 = 50/3
48/2 + 1 = 50/2
0 + 1 = 50/50
Cộng vế theo vế dãy đẳng thức trên ta được:
1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50/2 + 50/3 + 50/4 +........+ 50/49 + 50/50
⇒ 1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50 x (1/2 + 1/3 + 1/4 +........+ 1/49 + 1/50)
⇒ B = 50A
⇒ A/B = 1/50
50A=\(\left(\frac{49}{1}+.......+\frac{1}{49}\right)49:2\)
50A= 1201
A=1201:50
A=\(\frac{1201}{10}\)=120.1
mà 120,1 ko phải số tự nhiên mà là số thập phân
=>A ko là số tự nhiên
=> \(A=\frac{\left(\frac{49}{1}+\frac{48}{2}+...+\frac{1}{49}\right)}{50}=\frac{49}{50.1}+\frac{48}{50.2}+...+\frac{1}{50.49}\)
=> \(A=\frac{50-1}{50.1}+\frac{50-2}{50.2}+...+\frac{50-49}{50.49}\)
=> \(A=\left(\frac{50}{50.1}+\frac{50}{50.2}+...+\frac{50}{50.49}\right)-\left(\frac{1}{50.1}+\frac{2}{50.2}+...+\frac{49}{50.49}\right)\)
=> \(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\) ( có 49 số 1/50 )
=> \(A=1+\frac{1}{2}+...+\frac{1}{49}-\frac{49}{50}=\left(1-\frac{49}{50}\right)+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\)
=> \(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)
Vậy A không phải là số tự nhiên
vì là phân số nên không phải là số tự nhiên
theo mik là zậy
\(50A=\frac{49}{1}+\frac{48}{2}+...+\frac{2}{48}+\frac{1}{49}\)
\(\Rightarrow50A=1+\left(1+\frac{48}{2}\right)+...+\left(1+\frac{2}{48}\right)+\left(1+\frac{1}{49}\right)\)
\(\Rightarrow50A=\frac{50}{50}+\frac{50}{2}+...+\frac{50}{48}+\frac{50}{49}\)
\(\Rightarrow A=\frac{1}{2}+...+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}\)
Quy đồng mẫu số của các phân số trong tổng A
Dễ thấy \(2^5\)là lũy thừa với cơ số 2 lớn nhất nhỏ hơn 50 nên ta chọn \(MC=2^5.3.5.7...49\)
Gọi a2;a3;a4;...;a50 lần lượt là các thừa số phụ tương ứng
Lúc đó \(A=\frac{a_2+a_3+a_4+...+a_{50}}{2^4.3.5.7...49}\)
Ta thấy a2;a3;a4;...;a50 đều chứa thừa số 2 nên chúng chẵn ngoại trừ số a32
(có \(\frac{1}{32}=\frac{a_{32}\left(=3.5.7...49\right)}{2^4.3.5.7...49}\)
Phân số \(A=\frac{a_2+a_3+a_4+...+a_{50}}{2^4.3.5.7...49}\)có mẫu chẵn, tử lẻ nên A không là số tự nhiên