So sánh 2^1993 và 7^714
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{10}=1024< 1029=3.7^3\)
\(\Leftrightarrow\left(2^{10}\right)^{238}< \left(3.7^3\right)^{238}\)
\(\Leftrightarrow2^{2380}< 3^{238}.7^{714}\) \(\left(1\right)\)
\(3^5=243< 256=2^8\) \(\left(2\right)\)
\(3^3=27< 32=2^5\) \(\left(3\right)\)
Từ \(\left(2\right)\), \(\left(3\right)\) ta có:
\(3^{328}=3^3.3^{325}=3^3\left(3^5\right)^{47}< 2^5\left(2^8\right)^{47}=2^{381}\)\(\left(4\right)\)
Từ \(\left(1\right)\), \(\left(4\right)\) ta có:
\(2^{2380}< 3^{238}.7^{714}\)
\(\Leftrightarrow2^{2380}< 2^{381}.7^{714}\)
\(\Leftrightarrow2^{1999}< 7^{714}\)
\(\Leftrightarrow2^{1993}< 7^{714}\).
\(2^{10}=1024< 1025;7^3=343\Rightarrow2^{10}< 1025< 1029=3.7^3\)
\(\Rightarrow\left(2^{10}\right)^{238}< \left(3.7^3\right)^{238}\Leftrightarrow2^{2380}< 3^{238}.7^{714}\)
\(2^8=256;3^5=243\Rightarrow2^8>3^5\)
\(3^{328}=3^3.3^{325}=3^3.\left(3^5\right)^{47}< 3^3.\left(2^8\right)^{47}< 2^5.2^{376}=2^{381}\)\(\Rightarrow3^{328}< 2^{381}\)
\(2^{2380}< 3^{238}.7^{714}\Rightarrow2^{1999}< 7^{714}\Leftrightarrow2^{1993}< 7^{714}.\)
Mình xin trả lời:
212 =1025; 73 =343 => 210 < 3.73 => (210)238 <3238 .(73)238 => 22380< 3238 . 7714
28= 256; 34 =243=> 35 < 28
Ta có : 3238= 33. 2225 = 33. (35) 47 < 25. 2376 => 3328 < 2381
22380 < 2238 . 7714 => 21999 < 714 mà 21999> 21993 => 21993< 7714
,
Ê bạn vào chỗ https://olm.vn/hoi-dap/question/911743.html
Cách đây nè:
2^10 = 1025 ; 7^3 = 343 => 2^10 < 3.7^3 => \(\left(2^{10}\right)^{238}<3^{238}.\left(7^3\right)^{238}\) => 2^2380 < 3^238 .7^714
2^8 = 256 ; 3^5 = 243 => 3^5 < 2^8
Ta có :
3^328 = 3^3 . 3^325 = \(3^3.\left(3^5\right)^{47}<3^3.\left(2^8\right)^{47}<2^5.2^{376}\Rightarrow3^{328}<2^{381}\)
2^2380 < 2^238 . 7^714 => 2^2380 < 2^238 . 7^714 => 2^1999 < 7^14 mà 2^1999 > 2^1993 => 2^1993 < 7^714
Chỉnh lại tý
2^10 = 1025 ; 7^3 = 343 => 2^10 < 3.7^3 => \(\left(2^{10}\right)^{238}<3^{238}.\left(7^3\right)^{238}\) => 2^2380 < 3^238 .7^714
2^8 = 256 ; 3^5 = 243 => 3^5 < 2^8
Ta có :
3^328 = 3^3 . 3^325 = \(3^3.\left(3^5\right)^{47}<3^3.\left(2^8\right)^{47}<2^5.2^{376}\Rightarrow3^{328}<2^{381}\)
2^2380 < 2^238 . 7^714 => 2^1999 < 7^14 mà 2^1999 > 2^1993 => 2^1993 < 7^714