K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

\(f\left(\frac{1}{3}\right)+2f\left(\frac{1}{\frac{1}{3}}\right)=\left(\frac{1}{3}\right)^2\Rightarrow f\left(\frac{1}{3}\right)+2f\left(3\right)=\frac{1}{9}\)(1)

\(f\left(3\right)+2f\left(\frac{1}{3}\right)=3^2\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)=18\)(2)

Từ (1) và (2) \(\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)-f\left(\frac{1}{3}\right)-2f\left(3\right)=18-\frac{1}{9}\)

\(\Rightarrow3f\left(\frac{1}{3}\right)=\frac{161}{9}\Rightarrow f\left(\frac{1}{3}\right)=\frac{161}{27}\)

2 tháng 2 2017

ta có

thay x = 2 ta đc

f(2) + 2f(1/2) = 4                (1)

thay x = 1/2 ta đc

f(1/2) + 2f(2) = 1/4

=> 2f(1/2) + 4f(2) = 1/2               (2)

từ (1) và (2) => ta có

2f(1/2) + 4f(2) = 1/2

-

f(2) + 2f(1/2) = 4

=

3f(2) = 1/2 - 4 = -7/2

=> f(2) = -7/6

Với x=2 ta có \(f\left(2\right)-3f\left(\frac{1}{2}\right)=4\left(1\right)\)

Với x=1/2 ta có:\(f\left(\frac{1}{2}\right)-3f\left(2\right)=\frac{1}{4}\Rightarrow3f\left(\frac{1}{2}\right)-9f\left(2\right)=\frac{3}{4}\left(2\right)\)

Lấy (1) cộng (2) ta có

\(\Rightarrow f\left(2\right)-3f\left(\frac{1}{2}\right)+3f\left(\frac{1}{2}\right)-9f\left(2\right)=4+\frac{3}{4}\)

\(\Rightarrow-8f\left(2\right)=\frac{19}{4}\)

\(\Rightarrow f\left(2\right)=-\frac{19}{32}\)

2 tháng 11 2016

Ta có \(f\left(x\right)+2f\left(\frac{1}{x}\right)=x^2\)

Xét với x = a thì ta có \(f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\) (1)

Xét với x = \(\frac{1}{a}\) thì ta có \(f\left(\frac{1}{a}\right)+2f\left(a\right)=\frac{1}{a^2}\)(2)

Từ (1) và (2) ta suy ra \(\hept{\begin{cases}f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\\f\left(\frac{1}{a}\right)+2f\left(a\right)=\frac{1}{a^2}\end{cases}\Leftrightarrow}\hept{\begin{cases}f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\left(1\right)\\2f\left(\frac{1}{a}\right)+4f\left(a\right)=\frac{2}{a^2}\left(2\right)\end{cases}}\)

Lấy (2) trừ (1) theo vế được \(3f\left(a\right)=\frac{2}{a^2}-a^2\Leftrightarrow f\left(a\right)=\frac{\frac{2}{a^2}-a^2}{3}=\frac{2-a^4}{3a^2}\)

Từ đó suy ra được \(f\left(x\right)=\frac{2-x^4}{3x^2}\)

Đến đây dễ dàng tính được f(2) 

2 tháng 11 2016

Mình kí hiệu (1) (2) hai lần , bạn sửa lại chỗ đó nhé ^^

29 tháng 1 2018

Xét hàm số f(x) thỏa mãn f(x)+3f(1/x)=x^2. với mọi x thuộc R. 
Đúng với x = 2 . => f(2) + 3f(1/2) = 2^2 = 4 
=> f(2) + 3f(1/2) = 4 ( 1 ) 
Đúng với x = 1/2 => f(1/2) + 3f(2) = (1/2)^2 = 1/4. 
=> 3f(2) + f (1/2) = 1/4.=> 9f(2) + 3f(1/2) = 3/4 ( 2 ) 
Lấy (2) trừ (1) ta đc : 8 f(2) = 3/4 - 4 = -13/4 
=> f(2) = -13 / 32

29 tháng 3 2020

\(f\left(x\right)+3f\left(\frac{1}{x}\right)=x^2\)

Tại x=2 \(\Rightarrow f\left(2\right)+3f\left(\frac{1}{2}\right)=2^2=4\left(1\right)\)

Tại x=\(\frac{1}{2}\)\(\Rightarrow f\left(\frac{1}{2}\right)+3f\left(2\right)=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

\(\Rightarrow3f\left(\frac{1}{2}\right)+9f\left(2\right)=\frac{3}{4}\)

\(\Rightarrow9f\left(2\right)+3f\left(\frac{1}{2}\right)=\frac{3}{4}\left(2\right)\)

Từ (1)(2) \(\Rightarrow\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\9f\left(2\right)+3f\left(\frac{1}{2}\right)=\frac{3}{4}\end{cases}\Rightarrow8f\left(2\right)=\frac{3}{4}-4=\frac{-13}{4}}\)

\(\Rightarrow f\left(2\right)=\frac{-13}{32}\)