Tìm số nguyên x và y biết : 2x/y + 2=4x - 6/y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có :2xy-6=4x-y => 2xy-6-4x+y=0 => 2*(2xy-6-4x+y)=2*0 =>4xy-12-8x+2y=0 => 2x2y-4-8-8x+2y=0 => 2x2y-4-8x+2y=8 =>(2x2y+2y)-(8x+4)=8 =>2y(2x+1)-4(2x+1)=8 => (2y-4)(2x+1)=8 Ta có bảng sau :
2y-4 | 1 | 8 | 2 | 4 | -1 | -8 | -2 | -4 |
2x+1 | 8 | 1 | 4 | 2 | -8 | -1 | -4 | -2 |
y(yϵ\(ℤ\)) | 5/2(loại ) | 6(thỏa mãn) | 3(loại) | 4(loại) | 3/2( loại) | -2(thỏa mãn) | 1( loại) | 0(loại ) |
x(xϵ\(ℤ\)) | 7/2(loại) | 0(thỏa mãn) | 3/2( loại) | 1/2( loại) | -9/2( loại) | -1(thỏa mãn) | -5/2( loại) | -3/2( loại) |
Vậy các cặp nghiệm x,y thỏa mãn là (0;6) và (-1;-2)
ta có (2x+1).(2-y)=6
=> (2x+1).(2-y)=1.6=6.1=(-1)(-6)=(-6)(-1)
trường hợp 1: 2x+1=1;2-y=6
=>x=0;y=-4
th2: 2x+1=6;2-y=1
=> x=5/2;y=1 (loại)
th3:2x+1=-1;2-y=-6
=> x=-1;y=8
th4: 2x+1=-6;2-y=-1
=> x=-7/2:y=3 (loại)
vậy...
Vì x,y là số nguyên nên 2x+1 và 2-y thuộc Ư 6={-6;-3;-2;-1;1;2;3;6}
Ta có bảng sau
2x+1 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
2x | -7 | -4 | -3 | -2 | 0 | 1 | 2 | 5 |
x | loại | -2 | loại | -1 | 0 | loại | 1 | loại |
2-y | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
y | 3 | 4 | 5 | 8 | -4 | -1 | 0 | 1 |
Vậy cặp số (x,y) là (-2;4);(-1;8);(0;-4);(1;0)
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{-2}=\frac{2x+5y}{2.3+5.\left(-2\right)}=-\frac{12}{-4}=3\)
\(x=-3;y=6\)
b, Theo bài ra ta có : \(x:y=4:5\Leftrightarrow\frac{x}{4}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)
\(x=-52;y=-65\)
c, Theo bài ra ta có: \(4x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{12}{3}=4\)
\(x=28;y=16\)
x:y=5:6
=>x/y=5/6
=>x/5=y/6
=>2x/10=3y/18=(2x+3y)/(10+18)=56/28=2 (tính chất dãy tỉ số = nhau)
2x/10=2
=>x/5=2=>x=10
3y/18=2
=>y/6=2=>y=12
vậy x=10 và y=12
=> \(\frac{2x}{y}+\frac{6}{y}=4x-2\)
<=> \(\frac{2\left(x+3\right)}{y}=2\left(2x-1\right)\)
<=> \(\frac{\left(x+3\right)}{y}=\left(2x-1\right)\)
=> \(y=\frac{x+3}{2x-1}=>2y=\frac{2x+6}{2x-1}=\frac{\left(2x-1\right)+7}{2x-1}\)
=> \(2y=1+\frac{7}{2x-1}\)
Để y nguyên => 2y nguyên => 7 chia hết cho 2x-1 => 2x-1=(-7,-1,1,7)
Đáp số: Các cặp (x,y) thỏa mãn là: (-3,0); (0, -3); (1,4); (4,1)
Cặp (-3, 0) Loại do y khác 0