Tính giá trị biểu thức sau:
C=\(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{2016.2017}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left[1+\frac{1}{1\cdot3}\right]\left[1+\frac{1}{2\cdot4}\right]...\left[1+\frac{1}{2014\cdot2016}\right]\)
\(=\frac{4}{3}\cdot\frac{9}{8}\cdot\frac{16}{15}\cdot...\cdot\frac{4060225}{4060224}\)
\(=\frac{2\cdot2}{1\cdot3}\cdot\frac{3\cdot3}{2\cdot4}\cdot\frac{4\cdot4}{3\cdot5}\cdot...\cdot\frac{2015\cdot2015}{2014\cdot2016}\)
\(=\frac{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot2015\cdot2015}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot2014\cdot2016}\)
Để ý kĩ thì các thừa số dưới mẫu so với trên tử giống nhau chỉ khác 2016 nên C bằng:
C = 2*2*3*3*4*4*...*2015*2015/1*2*3*3*4*4*5*5*...*2015*2015*2016 = 1/2016
Ta có : (a-1)(a+1)=a2+a-a-1=a2-1
\(\Rightarrow\)(a-1)(a+1)+1=a2
Từ đó ta có :
\(C=\frac{2^2}{1.3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot...\cdot\frac{2015^2}{2014\cdot2016}\)
\(\Rightarrow\)\(C=\left(\frac{2\cdot3\cdot4\cdot...\cdot2015}{1\cdot2\cdot3\cdot...\cdot2014}\right)\cdot\left(\frac{2\cdot3\cdot4\cdot...2015}{3\cdot4\cdot5\cdot...\cdot2016}\right)\)
\(\Rightarrow\)\(C=\frac{2015}{1}\cdot\frac{1}{2016}\)
\(\Rightarrow\)\(C=\frac{2015}{2016}\)
=1/2.(1+1/1.3).(1+1/2.4).(1+1/3.5)...(1+1/2014.2016)
=1/2.(1+1/1-1/3).(1+1/3-1/5)...(1+1/2014-1/2016)
=1/2.1+(1/1-1/2016)
=1/2.2015/2016
=2015/4032
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2014.2016}\right)\)
\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2015.2015}{2014.2016}\)
\(A=\frac{2.3.4...2015}{1.2.3...2014}.\frac{2.3.4...2015}{3.4.5...2016}\)
\(A=2015.\frac{1}{1008}\)
\(A=\frac{2015}{1008}\)
Ta có :
\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}............\frac{2015^2}{2014.2016}\)= \(\frac{2.2}{1.3}.\frac{3.3}{2.4}...........\frac{2015.2015}{2014.2016}=\frac{2.2015}{2016}=\frac{2015}{1008}\)
k cho mình nha
Ta có công thức :
\(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
Áp dụng vào bài toán ta được :
\(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}..........\frac{2015^2}{2014.2016}\)
\(=\frac{\left(2.3.4....2015\right)\left(2.3.4....2015\right)}{\left(1.2.3...2014\right)\left(3.4.5.....2016\right)}\)
\(=\frac{2015.2}{2016}=\frac{2015}{1008}\)
=1(1/1*3*(1/2*4)*...*(1+1/2014*2016)
=1/2(2+2/1*3)+(2+2/2*4)*...(2+2/2014*2016)
=1/2(2+1/1-1/3)...(2+1/2014-1/2016)
=1/2*(1/1-1/2016)
=3023/4032
2A=\(\left(1+\frac{1}{3}\right)\)\(\left(1+\frac{1}{8}\right)\)\(\left(1+\frac{1}{15}\right)\)\(.......\)\(\left(1+\frac{1}{4064255}\right)\)
2A = \(\frac{4}{3}\)\(.\)\(\frac{9}{8}\)\(.\)\(\frac{16}{15}\)\(......\)\(\frac{4064256}{4064255}\)
2A = \(\frac{2.2}{1.3}\)\(.\)\(\frac{3.3}{2.4}\)\(.\)\(\frac{4.4}{3.5}\)\(......\)\(\frac{2016.2016}{2015.2017}\)
2A = \(\frac{2.3.4....2016}{1.2.3.....2015}\)\(.\)\(\frac{2.3.4....2016}{3.4.5....2017}\)
2A = \(\frac{2016}{1}\)\(.\)\(\frac{2}{2017}\)
2A = \(\frac{4032}{2017}\)
A = \(\frac{4032}{2017}\)\(:2\)
A = \(\frac{2016}{2017}\)
2c=2/1.3+2/2.4+2/3.5+...+2/2016.2018
2c=1-1/3+1/2-1/4+1/3-1/5+...+1/2016-1/2017
2c=1-1/2017
2c=2016/2017
c=4032/2017
Lê Minh Hiếu cách lm đúng mà sai kết quả
KQ : \(\frac{2016}{4034}\)