K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

=1/2.(1+1/1.3).(1+1/2.4).(1+1/3.5)...(1+1/2014.2016)

=1/2.(1+1/1-1/3).(1+1/3-1/5)...(1+1/2014-1/2016)

=1/2.1+(1/1-1/2016)

=1/2.2015/2016

=2015/4032

13 tháng 7 2017

sai roi

8 tháng 4 2016

\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2014.2016}\right)\)

\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2015.2015}{2014.2016}\)

\(A=\frac{2.3.4...2015}{1.2.3...2014}.\frac{2.3.4...2015}{3.4.5...2016}\)

\(A=2015.\frac{1}{1008}\)

\(A=\frac{2015}{1008}\)

8 tháng 4 2016

Ta có :

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}............\frac{2015^2}{2014.2016}\)\(\frac{2.2}{1.3}.\frac{3.3}{2.4}...........\frac{2015.2015}{2014.2016}=\frac{2.2015}{2016}=\frac{2015}{1008}\)

k cho mình nha

19 tháng 3 2017

Ta có công thức :

\(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Áp dụng vào bài toán ta được :

\(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}..........\frac{2015^2}{2014.2016}\)

\(=\frac{\left(2.3.4....2015\right)\left(2.3.4....2015\right)}{\left(1.2.3...2014\right)\left(3.4.5.....2016\right)}\)

\(=\frac{2015.2}{2016}=\frac{2015}{1008}\)

19 tháng 3 2017

=1(1/1*3*(1/2*4)*...*(1+1/2014*2016)

=1/2(2+2/1*3)+(2+2/2*4)*...(2+2/2014*2016)

=1/2(2+1/1-1/3)...(2+1/2014-1/2016)

=1/2*(1/1-1/2016)

=3023/4032

20 tháng 4 2018

\(C=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)..\left(1+\frac{1}{2014.2016}\right)\)

\(=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{2015.2015}{2014.2016}\)

\(=\frac{2.2.3.3.4.4...2015.2015}{1.3.2.4.3.5...2014.2016}\)

\(=\frac{\left(2.3.4..2015\right)\left(2.3.4..2015\right)}{\left(1.2.3..2014\right)\left(3.4.5..2016\right)}\)

\(=\frac{2015.2}{2016}=\frac{2015}{1008}\)

Vậy \(C=\frac{2015}{1008}\)

18 tháng 3 2019

2015/2016

10 tháng 4 2018

\(\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2013\cdot2015}\right)\)

\(=\frac{4}{1\cdot3}\cdot\frac{9}{2\cdot4}\cdot\frac{16}{3\cdot5}\cdot...\cdot\frac{4056196}{2013\cdot2015}\)

\(=\frac{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2014\cdot2014\right)}{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2013\cdot2015\right)}\)

\(=\frac{\left(2\cdot3\cdot4\cdot...\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2014\right)}{\left(1\cdot2\cdot3\cdot...\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2015\right)}\)

\(=\frac{2014\cdot2}{1\cdot2015}\)

\(=\frac{4028}{2015}\)

29 tháng 3 2016

  Ta có : 
 1 + 1/(1.3) = (1.3 + 1)/(1.3) = [(2 - 1)(2 + 1) + 1]/(1.3) = 2^2 / (1.3) 
 1 + 1/(2.4) = (2.4 + 1)/(2.4) = [(3 - 1)(3 + 1) + 1]/(2.4) = 3^2 / (2.4) 
 1 + 1/(3.5) = (3.5 + 1)/(3.5) = [(4 - 1)(4 + 1) + 1]/(3.5) = 4^2 / (3.5) 
.......................................... 
.......................................... 
.......................................... 
1+1/(2014.2016)=(2014.2016+1)/(2014.2016)=[(2015-1)(2015+1)+1]/(2014.2016)=2015^2/(2014.2016)

Nhân các bất đẳng thức trên vé theo vế ta được:

------->S= (2^2) (3^2) (4^2) ...(2015^2)/[(1.3) (2.4) (3.5) ...(2013.2015)(2014.2016)]

S= (2^2) (3^2) (4^2) ... (2015^2) / [1.2.(3^2)(4^2)(5^2) ... (2013^2)(2014^2).2015.2016] 

S = (2.2015) / 2016 

Cái này là đáp số rồi...Đúng 100% đó bạn k giúp mình nhé :P

12 tháng 5 2017

Lê Châu bị Điên à

12 tháng 5 2017

lê châu bị khùng à