Bài 1: Thực hiện phép tính:a, \(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)b, \(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)c, \(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}\)d, \(\frac{4^{2002}.9^{1001}}{16^{1001}.3^{2003}}\)e, \(\sqrt{25-16}-\left|-3,7+0,7\right|\)Bài 2: Tìm xa, \(\frac{1}{3}x+\frac{4}{5}=3\frac{4}{5}\)b, \(\left|x+\frac{3}{4}\right|-2,25=1\frac{3}{4}\)c, \(\left(-x+\frac{2}{5}\right)^4=\frac{1}{16}\)d,...
Đọc tiếp
Bài 1: Thực hiện phép tính:
a, \(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)
b, \(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)
c, \(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}\)
d, \(\frac{4^{2002}.9^{1001}}{16^{1001}.3^{2003}}\)
e, \(\sqrt{25-16}-\left|-3,7+0,7\right|\)
Bài 2: Tìm x
a, \(\frac{1}{3}x+\frac{4}{5}=3\frac{4}{5}\)
b, \(\left|x+\frac{3}{4}\right|-2,25=1\frac{3}{4}\)
c, \(\left(-x+\frac{2}{5}\right)^4=\frac{1}{16}\)
d, \(\left(\frac{2}{5}\right)^{3x}:\left(\frac{4}{3}\right)^{21}=\left(\frac{6}{20}\right)^{21}\)
e, \(\frac{-x}{\frac{3}{5}}=\frac{\frac{27}{5}}{-x}\)
g, \(x:1\frac{1}{2}=-2,5:2\frac{1}{5}\)
\(=\frac{12}{7}\cdot\frac{3}{4}-\frac{6}{7}\cdot\frac{4}{3}+\frac{6}{7}\)
\(=\frac{6}{7}\left(\frac{3}{2}-\frac{4}{3}+1\right)\)
\(=\frac{6}{7}\left(\frac{1}{6}+1\right)=\frac{6}{7}\cdot\frac{7}{6}=1\)
2.
\(=2017\cdot2018\cdot\left[\left(2016\cdot2018\right)-\left(2016\cdot2017\right)\right]\)
\(=2017\cdot2018\cdot2016\left(2018-2017\right)=2016\cdot2017\cdot2018\)
3.
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{100}-1\right)=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{99}{100}\)
\(=\frac{1}{100}\)
4.
\(=\frac{1+2+2^2+2^4+...+2^9}{2\left(1+2+2^2+2^3+2^4+...+2^9\right)}\)
\(=\frac{1}{2}\)
mình chỉ làm được câu 3 thôi
có \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)....\left(\frac{1}{100}-1\right)\)
\(=\frac{-1}{2}\times\frac{-2}{3}\times....\times\frac{-99}{100}\)
\(=\frac{\left(-1\right)\left(-2\right)....\left(-99\right)}{2\times3\times....\times100}\)
\(=\frac{-\left(1\times2\times....\times99\right)}{2\times3\times....\times100}\)
\(=\frac{-1}{100}\)