cho tam giac ABC vuong tai A , co duong cao Ah . Goi M la doi xung cua H qua AB; goi N la doi xung cua H qua AC CMR
a, AM=AN
b, M la doi xung cua N qua A
c, MHN la tam giac vuon tai H
d, MN vuong goc vs CN
e, BMNC la hinh thang vuong
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi MH giao BA tại S, HN giao AC tại O
tứ giác ASHO có ^ASH = ^SAO = ^HOA = 90 độ
=> ASHO là HCN (vì là tứ giác có 3 góc vuông)
=> SH = AO, SA = HO (t/c HCN)
SH = AO mà SM = SH (vì M đối xứng H qua AB)
=> SM = AO
SA = HO mà HO = ON ( H đối xứng N qua AC)
=> SA = ON
xét tam g SAM vuông tại S
tam g OAN vuông tại O
có SM = OA (cmt)
SA = ON (cmt)
=> tam g SAM = tg OAN (2 cgv)
=> MA = AN (2 cạnh tương ứng)
b) xét tam g SAM vuông tại S
tam g SAH vuông tại S
có SM = SH (M đx Hqua AB)
SA là cạnh chung
=> tam g SAM = tam g SAH (2cgv)
=> \(\widehat{A_1}=\widehat{A_2}\) ( 2 góc tương ứng) (1)
cm tương tự ta được tam g OAH = tam g OAN (2 cạnh góc vuông)
=> \(\widehat{A_3}=\widehat{A_4}\) (2 góc t/ư) (2)
có \(\widehat{A_2}+\widehat{A_3}=90^0\) ( tam g ABC vuông tại A ) (3)
từ (1), (2) và (3) => \(\widehat{A_1}+\widehat{A_4}=90^0\) (4)
từ (3) và (4) => \(\widehat{A_1}+\widehat{A_2}+\widehat{A_3}+\widehat{A_4}=180^0\) hay ^MAN =180ĐỘ
=> M,A,N thẳng hàng
mà MA = AN (cm câu a)
=> M đx N qua A
c)có ASHO là HCN (cm câu a)
=> ^SHO = 90ĐỘ hay ^MHN =90ĐỘ
=> tam g MHN vuông tẠI H
d)
có ^SHA + ^AHO = ^SHO = 90 ĐỘ (ASHO là HCN )
^AHO + ^CHO = ^AHC = 90ĐỘ (vì AH vuông BC)
=> ^SHA = ^CHO
xét tam g AHO vuông tại O
tam g ANO vuông tại O
có HO = ON (H đx N qua AC)
AO là cạnh chung
=> tam g AHO = tam g ANO (2cgv)
=> ^AHO = ^ANO ( 2 góc t/ư)
cm tương tự ta đc tam g AOC = g NOC (2cgv)
=> ^ OHC = ^ONC (2 góc t/ư)
mà ^OHC = ^SHA (cmt)
=> ^ ONC = ^SHA
có ^SHA + ^ AHO = 90 ĐỘ ( = ^ SHO)
mà ^ SHA = ^ONC (cmt)
^ANO = ^AHO (cmt)
=> ^ANO + ^ONC = 90ĐỘ = ^ANO
=> MN vuông NC
a; Ta có: M và H đối xứng nhau qua AB
nên AB là đường trung trực của MH
=>AB vuông góc với MH tại trung điểm của MH
=>AH=AM
=>ΔAHM cân tại A
mà AB là đường cao
nên AB là tia phân giác của góc HAM(1)
Ta có: H và N đối xứng nhau qua AC
nên AC là đường trung trực của HN
=>AN=AH
=>ΔAHN cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAN(2)
Ta có: AH=AM
AN=AH
DO đó:AM=AN
b: Từ (1) và (2) suy ra \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}=2\cdot90^0=180^0\)
=>M,A,N thẳng hàng
mà AM=AN
nên A là trung điểm của MN
c: Xét ΔMHN có
HA là đường trung tuyến
HA=MN/2
Do đo: ΔMHN vuông tại H
d: Xét ΔCHA và ΔCNA có
CH=CN
\(\widehat{HAC}=\widehat{NAC}\)
AC chung
Do đo: ΔCHA=ΔCNA
Suy ra: \(\widehat{CHA}=\widehat{CNA}=90^0\)
=>MN\(\perp\)NC
a: Xét tứ giác APMN có
góc APM=góc ANM=góc PAN=90 độ
nên APMN là hình chữ nhật
b: Xét tứ giác AMIQ có
N là trung điểm chung của AI và MQ
MQ vuông góc với AI
Do đó: AMIQ là hình thoi
Câu 2:
a: Xét tứ giác ADBH có AB cắt DH tại trung điểm của mỗi đường
nên ADBH là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên ADBH là hình chữ nhật
b: Để ADBH là hình vuông thì BA là tia phân giác của góc DBH
=>\(\widehat{ABC}=45^0\)
a: Ta có: H và M đối xứng nhau qua AB
nên AB là đường trung trực của MH
=>AM=AH
=>ΔAMH cân tại A
mà AB là đường cao
nen AB là tia phân giác của góc HAM(1)
Ta có: H và N đối xứng nhau qua AC
nên AC là đường trung trực của HN
=>AH=AN
=>ΔAHN cân tại A
mà AC là đường cao
nên AC là phân giác của góc HAN(2)
Ta có: AM=AH
AN=AH
DO đó: AM=AN
b: Từ (1) và (2) suy ra \(\widehat{MAN}=2\cdot90^0=180^0\)
=>M,A,N thẳng hàng
mà AM=AN
nên A là trung điểm của MN
c: Xét ΔNHM có
HA là đương trung tuyến
HA=MN/2
Do đó ΔNHM vuông tại H
d: Xét ΔCNA và ΔCHA có
CN=CH
NA=HA
CA chung
Do đó;ΔCNA=ΔCHA
Suy ra: \(\widehat{CNA}=\widehat{CHA}=90^0\)
=>CN\(\perp\)MN