Cho tam giác ABC có : Góc B=50°;góc C=30°.
a)Tính góc A.
b)Kẻ AH vuông góc với BC.Trên tia đối của tia HA lấy điểm D sao cho HD=HA.Chứng minh góc BAC= góc BDC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC, có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
=> \(80^o+50^o+\widehat{C}=180^o\)
=> \(\widehat{C}=50^o\)
Ta có:
\(\widehat{B}=50^o\)
\(\widehat{C}=50^o\)
Suy ra: \(\widehat{B}=\widehat{C}\)
=> Tam giác ABC cân tại A.
Góc C bằng :
180o-80o-500=50o
vì Góc C =Góc B nên suy ra Tam giác ABC là tam giác cân
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Từ A kẻ đường cao AH vuông góc với BC , từ B kẻ đường cao BK vuông góc với AC
=> AH = sinC x AC = sin 500 x 35 = a
Ta có : AB = \(\frac{AH}{sinB}=\frac{a}{sinB}=b\)
BK = \(sinA\times AB=sin\left(180^o-60^o-50^o\right)=sin70^o\times b\)= c
=> S . ABC = 1/2AC x BK = 1/2 x 35 x c =..........
a,b,c mình đặt thay cho độ dài AH , AB, BK
Sao bạn không tính hẳn AH, AB, BK mà phải kí hiệu a, b,c vậy?
Kẻ AH vuông góc với BC
Trong tam giác vuông AHC ta có:
\(cosC=\frac{HC}{AC}\Rightarrow HC=cosC.AC=cos50.35\approx22cm\)
\(\Rightarrow AH=\sqrt{AC^2-HC^2}=\sqrt{35^2-22^2}=\sqrt{741}cm\)
Trong tam giác vuông AHB ta có:
\(sinB=\frac{AH}{AB}\Rightarrow AB=\frac{AH}{sinB}=\frac{\sqrt{741}}{sin60}=2\sqrt{247}cm\)
\(\Rightarrow HB=\sqrt{AB^2-AH^2}=\sqrt{\left(2\sqrt{247}\right)^2-741}=\sqrt{247}cm\)
Vậy \(S_{ABC}=\frac{AH\left(HB+HC\right)}{2}=\frac{\sqrt{741}.\left(\sqrt{247}+22\right)}{2}\approx513cm\)
a: Xét ΔABC có AB<AC<BC
nên góc C<góc B<góc A
b: góc C=180-50-60=70 độ
Xét ΔABC có góc A<góc B<góc C
nên BC<AC<AB
a: \(\widehat{A}=180^0-50^0-30^0=100^0\)
b: Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đó:ΔBAD cân tại B
Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAD cân tại C
Xét ΔBAC và ΔBDC có
BA=BD
AC=DC
BC chung
Do đó:ΔBAC=ΔBDC
Suy ra: \(\widehat{BAC}=\widehat{BDC}\)