Bài1 :Cho hình thang ABCD (AB//CD) ; AC vuông góc với BD ;BH vuông góc với CD tại H; chứng minh
\(\frac{1}{AC^2}+\frac{1}{BD^2}=\frac{1}{BH^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý: Kẻ AH ^ CD tại H, kẻ BK ^ CD tại K
Tính được SABCD = 180cm2
Bài 2: Từ A kẻ H, từ B kẻ K
Suy ra: AB=HK=10cm
=> BH=KC=\(\frac{26-10}{2}=8\)cm
=> BH=8 và HC= 10+8=18
=> AH2= HB.HC=8.18 <=>AH= 12
=> S= \(\frac{10+26}{2}.12=216\) cm2
Bài 1: \(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}\)
\(\Leftrightarrow BC=\sqrt{5^2+12^2}=13\)
Suy ra: BM=MC=BC/2=6,5
\(\Rightarrow MN^2=NC^2-MC^2\) (Tam giác MNC vuông tại M)
\(\Leftrightarrow MN=\sqrt{12^2-6,5^2}=\frac{\sqrt{407}}{2}\)
từ A hạ \(AE\perp DC\)
từ B hạ \(BF\perp DC\)
\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật
\(=>AB=EF=2cm\)
vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)
mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)
\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)
xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)
\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)