Xét các số gồm 7 chữ số phân biệt được lập từ các số từ 1 đến 71/ Hỏi có 3 số a;b;c mà a+b=c không?2/ Hỏi có hai số khác nhau a, b mà a chia hết cho b không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các chữ số từ 1 đến 9 có tổng cộng 9 chữ số. Để số có ba chữ số chia hết cho 3, tổng của các chữ số đó cũng phải chia hết cho 3.
Có hai trường hợp để tìm số thỏa mãn:
Trường hợp tổng ba số là 9: Có thể lập ra các số sau: 369, 639, 693, 963.
Trường hợp tổng ba số là 18: Có thể lập ra các số sau: 189, 279, 369, 459, 549, 639, 729, 819, 918.
Vậy có tổng cộng 9 số tự nhiên có 3 chữ số phân biệt và chia hết cho 3.
Chia các chữ số từ 1 đến 9 làm 3 tập \(A=\left\{3;6;9\right\}\) ; \(B=\left\{1;4;7\right\}\) ; \(C=\left\{2;5;8\right\}\)
Số có 3 chữ số chia hết cho 3 khi:
TH1: 3 chữ số của nó thuộc cùng 1 tập \(\Rightarrow3.3!=18\) số
TH2: 3 chữ số của nó thuộc 3 tập phân biệt:
Chọn ra mỗi tập một chữ số có \(3.3.3=27\) cách
Hoán vị 3 chữ số có: \(3!=6\) cách
\(\Rightarrow27.6=162\) số
Như vậy có tổng cộng \(18+162=180\) số thỏa mãn
Đáp án D
Có 6 cặp số có tổng lớn hơn 7 là (5;3); (5;4); (6;2); (6;3); (6;4); (6;5) nên ứng với 12 số có hai chữ số khác nhau mà có tổng lớn hơn 7.
Mặt khác, số các số có hai chữ số khác nhau được lập từ các chữ số 1; 2; 3; 4; 5; 6 là = 30 số.
Do đó, xác suất là:
Lời giải:
Gọi số thỏa mãn đề là $M$
Có $C^2_5$ cách chọn ra 2 số lẻ từ tập A
Với mọi cách chọn, có $A^2_5$ cách xếp 2 số lẻ đó trong $M$
Ba chữ số còn lại từ $(2;4;6;8)$ có $A^3_4$ cách chọn
Vậy số chữ số thỏa mãn: $C^2_5.A^2_5.A^3_4=4800$ số
bằng 4567
bằng 4567 bạn nhé