K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

25 tháng 12 2020

                                                 Giải

- Áp dụng 1 số hệ thức về cạnh và đường cao trong Δ vuông ABC ta có :

          \(AH^2=BH.CH\Rightarrow CH=\dfrac{AH^2}{BH}=\dfrac{12^2}{9}=16\left(cm\right)\)

               \(\Rightarrow BC=16+9=25\left(cm\right)\)

- Áp dụng định lý Pytago trong  \(\Delta AHC\perp H\) ta có :

          \(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)

     \(\Rightarrow AB=\sqrt{25^2-20^2}=15\left(cm\right)\)

- Áp dụng tỉ số lượng giác của góc nhọn trong Δ vuông \(ABC\) ta có :

             + \(\tan C=\dfrac{AB}{AC}=\dfrac{15}{20}=\dfrac{3}{4}\)

           \(\Rightarrow\) Góc \(C\approx37\) độ

           \(\Rightarrow\) Góc CAH = Góc B = 53 độ

           \(\Rightarrow\) Góc BAH = 37 độ

       

 

       

21 tháng 1 2018

Đáp án là B

18 tháng 9 2015

Áp dụng Pytago trong tam giác vuông ABC ta đc: 

\(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{3^2+4^2}=5cm\)

Áp dụng hệ thức lượng ta đc: 

AB . AC = AH . BC 

=> 3 . 4 = AH . 5

=> 12 = AH . 5 

=> AH = 12/5 cm

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)

AH=15*20/25=300/25=12(cm)

1 tháng 4 2023

AH=15*20/25=300/25=12(cm)

16 tháng 6 2021

undefinedundefinedundefined