Tam giác ABC vuông tại A có đường cao AH = 12,6 cm ; cạnh BC = 25,2 cm
a Tính ( AB + AC )^ 2; ( AB - AC )^ 2
b Tính BH; CH chính xác đến chữ số thập phân thứ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Giải
- Áp dụng 1 số hệ thức về cạnh và đường cao trong Δ vuông ABC ta có :
\(AH^2=BH.CH\Rightarrow CH=\dfrac{AH^2}{BH}=\dfrac{12^2}{9}=16\left(cm\right)\)
\(\Rightarrow BC=16+9=25\left(cm\right)\)
- Áp dụng định lý Pytago trong \(\Delta AHC\perp H\) ta có :
\(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)
\(\Rightarrow AB=\sqrt{25^2-20^2}=15\left(cm\right)\)
- Áp dụng tỉ số lượng giác của góc nhọn trong Δ vuông \(ABC\) ta có :
+ \(\tan C=\dfrac{AB}{AC}=\dfrac{15}{20}=\dfrac{3}{4}\)
\(\Rightarrow\) Góc \(C\approx37\) độ
\(\Rightarrow\) Góc CAH = Góc B = 53 độ
\(\Rightarrow\) Góc BAH = 37 độ
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)