CMR: Nếu \(a;b;c\) là các số khác 0 thỏa mãn :\(\dfrac{ab+ac}{2}=\dfrac{bc+ba}{3}=\dfrac{ca+cb}{4}thì\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}\) = \(\dfrac{5a+3b}{5c+3d}\) (1)
\(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\) (2)
Kết hợp (1) và (2) ta có:
\(\dfrac{5a+3b}{5c+3d}\) = \(\dfrac{5a-3b}{5c-3d}\)
⇒ \(\dfrac{5a+3b}{5a-3b}\) = \(\dfrac{5c+3d}{5c-3d}\) (đpcm)
b; \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{b}\) = \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
=> \(\dfrac{a}{b}=1\Rightarrow a=b\)
=> \(\dfrac{b}{c}=1\Rightarrow b=c\)
=>\(\dfrac{c}{a}=1\Rightarrow c=a\)
Vậy a=b=c
Dùng tỉ lệ thức em ha
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
Suy ra\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=1\) Từ đó suy ra a=b=c
theo đề bài ta có
`x+y=a`
`<=>(x+y)^2=a^2`
`<=>x^2+2xy+y^2=a^2`(1)
có
\(x^2+y^2\ge\dfrac{a^2}{2}\)
\(< =>\)\(2x^2+2y^2\ge a^2\)
thay (1) ta có
\(=>2x^2+2y^2\ge x^2+2xy+y^2\)
\(< =>2x^2+2y^2-x^2-2xy-y^2\ge0\)
\(< =>x^2-2xy+y^2\ge0\)
`<=>(x-y)^2>=0` (đúng)
dấu ''='' xảy ra khí `x=y`
Giả sử:
\(A=\left\{1;2\right\}\)
\(B=\left\{1;2;3\right\}\)
\(\Rightarrow\text{ A là tập hợp con của B}\)
\(\text{Lại có: }A\subset B=\left\{1,2\right\}=A\)
Vậy ta suy ra ĐPCM
Theo t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{ab+ac}{2}=\dfrac{bc+ba}{3}=\dfrac{ca+cb}{4}\)
\(=\dfrac{ab+ac+bc+ba-ca-cb}{2+3-4}=\dfrac{2ab}{1}\) \(\left(1\right)\)
\(=\dfrac{bc+cb+bc+ba-ab-ac}{3+4-2}=\dfrac{2bc}{5}\left(2\right)\)
\(=\dfrac{ab+ac+ca+cb-bc-ba}{2+4-3}=\dfrac{2ac}{3}\)\(\left(3\right)\)
Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow\dfrac{2ab}{1}=\dfrac{2bc}{5}=\dfrac{2ac}{3}\)
\(\dfrac{2ab}{1}=\dfrac{2bc}{5}\Leftrightarrow\dfrac{a}{1}=\dfrac{c}{15}\) \(\Leftrightarrow\dfrac{a}{3}=\dfrac{c}{15}\left(I\right)\)
\(\dfrac{2bc}{5}=\dfrac{2ac}{3}\Leftrightarrow\dfrac{b}{5}=\dfrac{a}{3}\left(II\right)\)
Từ \(\left(I\right)+\left(II\right)\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\left(đpcm\right)\)