trong 2 số sau đây số nào lớn hơn :a=\(\sqrt{1969}+\sqrt{1971}\);b=2 \(\sqrt{1970}\)tại sao nêu cách giải
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\sqrt{1969}+\sqrt{1971}\)
\(\Rightarrow a^2=1969+2\sqrt{1969\cdot1971}+1971\)
\(\Rightarrow a^2=2\cdot1970+2\sqrt{1969\cdot1971}\) (1)
\(b=2\cdot\sqrt{1970}\)
\(\Rightarrow b^2=4\cdot1970=2\cdot1970+2\cdot1970\) (2)
có : \(1969+1971\ge2\sqrt{1969\cdot1971}\)
\(\Rightarrow2\cdot1970\ge2\sqrt{1969\cdot1971}\) vì 1969 khác 1971
\(\Rightarrow2\cdot1970>2\sqrt{1969\cdot1971}\) (3)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow a^2< b^2\) mà a;b không âm
\(\Rightarrow a< b\)
\(A^2=3940+2\cdot\sqrt{1970^2-1}\)
\(B^2=3940+2\cdot\sqrt{1970^2}\)
mà \(1970^2-1< 1970^2\)
nên A<B
Còn thêm cách nào khác ko ạ? Nếu có thì giúp em nha. Cảm ơn anh nhiều!
So sánh:\(\sqrt{1969}+\sqrt{1971}\)và \(2\sqrt{1970}\)
Ko bt bn giả ra chưa nhưng mk sẽ giải thử:
Áp dụng bất đẳng thức Bu-nhi- a -cốp- xki ta có:
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)thay vào đề bài đc:
\(\left(\sqrt{1969}+\sqrt{1971}\right)^2\le2\left(1969+1971\right)=\)
\(2.2.1970=4.1970\)\(=\left(2\sqrt{1970}\right)^2\) (1)
Hiển nhiên ko có dấu "=" vì \(a\ne b\) \(\left(\sqrt{1969}< \sqrt{1971}\right)\) (2)
(1); (2) \(\Rightarrow\left(2\sqrt{1970}\right)^2>\left(\sqrt{1969}+\sqrt{1971}\right)^2\)
\(\Rightarrow\sqrt{1969}+\sqrt{1971}< 2\sqrt{1970}\)(đpcm)
Ta có: \(a=\sqrt{37}-\sqrt{35}\approx0,16668\).
Mà:
\(\frac{2}{13}\approx0,15385\)
\(\frac{1}{6}\approx0,16667\)
\(\frac{2}{11}\approx0,18182\)
\(\frac{1}{5}=0,2\)
\(\frac{2}{9}\approx0,22222\)
Mà \(0,15385< 0,16667< 0,16668< 0,18182< 0,2< 0,22222\).
\(\Leftrightarrow\frac{2}{13}< \frac{1}{6}< \sqrt{37}-\sqrt{35}< \frac{2}{11}< \frac{1}{5}< \frac{2}{9}\).
Vậy số lớn nhất nhỏ hơn a là \(\frac{1}{6}\), số nhỏ nhất lớn hơn a là \(\frac{2}{11}\).
Bình phương a và b lên để so sánh