K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2020

\(a=\sqrt{1969}+\sqrt{1971}\)

\(\Rightarrow a^2=1969+2\sqrt{1969\cdot1971}+1971\)

\(\Rightarrow a^2=2\cdot1970+2\sqrt{1969\cdot1971}\)                        (1)

\(b=2\cdot\sqrt{1970}\)

\(\Rightarrow b^2=4\cdot1970=2\cdot1970+2\cdot1970\)                   (2)

có : \(1969+1971\ge2\sqrt{1969\cdot1971}\)

\(\Rightarrow2\cdot1970\ge2\sqrt{1969\cdot1971}\)    vì 1969 khác 1971

\(\Rightarrow2\cdot1970>2\sqrt{1969\cdot1971}\)               (3)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow a^2< b^2\) mà a;b không âm

\(\Rightarrow a< b\)

\(A^2=3940+2\cdot\sqrt{1970^2-1}\)

\(B^2=3940+2\cdot\sqrt{1970^2}\)

mà \(1970^2-1< 1970^2\)

nên A<B

27 tháng 9 2021

Còn thêm cách nào khác ko ạ? Nếu có thì giúp em nha. Cảm ơn anh nhiều!

6 tháng 4 2017

kết quả là a=b nha bạn

19 tháng 1 2017

Kết quả là a = b đó

23 tháng 4 2017

\(\sqrt{1969}+\sqrt{1971}< 2\sqrt{1970}\)

10 tháng 8 2017

So sánh:\(\sqrt{1969}+\sqrt{1971}\)\(2\sqrt{1970}\)

Ko bt bn giả ra chưa nhưng mk sẽ giải thử:

Áp dụng bất đẳng thức Bu-nhi- a -cốp- xki ta có:

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)thay vào đề bài đc:

\(\left(\sqrt{1969}+\sqrt{1971}\right)^2\le2\left(1969+1971\right)=\)

\(2.2.1970=4.1970\)\(=\left(2\sqrt{1970}\right)^2\) (1)

Hiển nhiên ko có dấu "=" vì \(a\ne b\) \(\left(\sqrt{1969}< \sqrt{1971}\right)\) (2)

(1); (2) \(\Rightarrow\left(2\sqrt{1970}\right)^2>\left(\sqrt{1969}+\sqrt{1971}\right)^2\)

\(\Rightarrow\sqrt{1969}+\sqrt{1971}< 2\sqrt{1970}\)(đpcm)

Phương trình A là phương trình bậc hai một ẩn vì a<>0

\(\sqrt{2}t^2-2t+4=0\)

\(\text{Δ}=\left(-2\right)^2-4\cdot\sqrt{2}\cdot4=4-16\sqrt{2}< 0\)

Do đó; Phương trình vô nghiệm

Thay x=4 vào \(y=f\left(x\right)=\sqrt{x}\), ta được

\(f\left(4\right)=\sqrt{4}=2\)

=>A(4;2) thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)

Thay \(x=2\) vào \(y=f\left(x\right)=\sqrt{x}\), ta được;

\(f\left(2\right)=\sqrt{2}>1\)

=>B(2;1) không thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)

Thay \(x=8\) vào \(y=\sqrt{x}\), ta được:

\(y=\sqrt{8}=2\sqrt{2}\)

=>\(C\left(8;2\sqrt{2}\right)\) thuộc đồ thị hàm số \(y=\sqrt{x}\)

Thay \(x=4-2\sqrt{3}\) vào \(y=\sqrt{x}\), ta được:

\(y=\sqrt{4-2\sqrt{3}}=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1< >1-\sqrt{3}\)

=>\(D\left(4-2\sqrt{3};1-\sqrt{3}\right)\) không thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)

Thay \(x=6+2\sqrt{5}\) vào \(y=f\left(x\right)=\sqrt{x}\), ta được:

\(f\left(6+2\sqrt{5}\right)=\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=\left|\sqrt{5}+1\right|=\sqrt{5}+1\)

vậy: \(E\left(6+2\sqrt{5};1+\sqrt{5}\right)\) thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)

26 tháng 4 2022

-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.

26 tháng 4 2022

-Thôi, mình chịu rồi. Mình dùng tất cả các BĐT như Caushy, Schwarz, Caushy 3 số... nhưng không ra.