K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2023

1) ab=2 (I); bc=3 (II); ca=54 (III)

Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 324 ⇒ abc = ±18

(II) ⇒ a= ±6 ; (I) ⇒ b= ±1/3 ; (II) ⇒ c= ±9

2) ab=5/3 (I); bc=4/5 (II); ca=3/4 (III)

Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 1 ⇒ abc = ±1

(II) ⇒ a= ±5/4 ; (I) ⇒ b= ±4/3 ; (II) ⇒ c= ±3/5

3) a(a+b+c)= -12 (I)

    b(a+b+c)= 18 (II)

    c(a+b+c)= 30 (III)

Lấy (I)+(II)+(III) ⇒ (a+b+c)2 = 36 ⇒ a+b+c = ±6

TH1 : a=6 ⇒ a= -12/6 = -2 ; b= 18/6 = 3 ; c= 30/6 = 5

TH2 : a=-6 ⇒ a= -12/-6 = 2 ; b= 18/-6 = -3 ; c= 30/-6 = -5

 

a=5, b=4, c=1

a=4, b=1, c=5

a=1, b=5, c=4

Bài này có thiếu ko bạn

27 tháng 3 2020

= 11/3321

17 tháng 9 2021

\(a^2+b^2+c^2+d^2=1\) và \(ab+bc+cd+da=1\)

\(\Rightarrow a^2+b^2+c^2+d^2=ab+bc+cd+da\)

\(\Rightarrow a^2+b^2+c^2+d^2-ab-bc-cd-da=0\)

\(\Rightarrow2\left(a^2+b^2+c^2+d^2-ab-bc-cd-da\right)=0.2\)

\(\Rightarrow2a^2+2b^2+2c^2+2d^2-2ab-2bc-2cd-2da=0\)

\(\Rightarrow a^2+a^2+b^2+b^2+c^2+c^2+d^2+d^2-2ab-2bc-2cd-2da=0\)

\(\Rightarrow\left(a^2-2ab-b^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2cd+d^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(c-d\right)^2=0\)

Ta có:

 \(\left(a-b\right)^2\ge0\)

\(\left(a-d\right)^2\ge0\)

\(\left(b-c\right)^2\ge0\)

\(\left(c-d\right)^2\ge0\)

Mà tổng của chúng đều là 0

\(\Rightarrow a-b=0\Rightarrow a=b\)

\(\Rightarrow a-d=0\Rightarrow a=d\)

\(\Rightarrow b-c=0\Rightarrow b=c\)

\(\Rightarrow c-d=0\Rightarrow c=d\)

\(\Rightarrow a=b=c=d\)

Thay: \(a^2+b^2+c^2+d^2=1\) ta được

\(\Rightarrow a^2+a^2+a^2+a^2=1\)

\(\Rightarrow4a^2=1\)

\(\Rightarrow a^2=\frac{1}{4}\)

\(\Rightarrow a\in\left\{\pm\frac{1}{2}\right\}\)