K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

Câu 4:
Giải:

Ta có:

\(n+1⋮2n-3\)

\(\Rightarrow2\left(n+1\right)⋮2n-3\)

\(\Rightarrow2n+2⋮2n-3\)

\(\Rightarrow\left(2n-3\right)+5⋮2n-3\)

\(\Rightarrow5⋮2n-3\)

\(\Rightarrow2n-3\in\left\{1;5\right\}\)

+) \(2n-3=1\Rightarrow n=2\)

+) \(2n-3=5\Rightarrow n=4\)

Vậy \(n\in\left\{2;4\right\}\)

*Lưu ý: còn trường hợp n = 1 nữa nhưng khi đó tỉ 2n - 3 = -1. Bạn lấy số đó thì thay vào.

20 tháng 12 2016

1)Ta có:[a,b].(a,b)=a.b

120.(a,b)=2400

(a,b)=20

Đặt a=20k,b=20m(ƯCLN(k,m)=1,\(k,m\in N\))

\(\Rightarrow20k\cdot20m=2400\)

\(400\cdot k\cdot m=2400\)

\(k\cdot m=6\)

Mà ƯCLN(k,m)=1,\(k,m\in N\)

Ta có bảng giá trị sau:

k2316
m3261
a406020120
b604012020

Mà a,b là SNT\(\Rightarrow\)a,b không tìm được

2)Mình nghĩ đề đúng là cho 2a+3b chia hết cho 15

Ta có:\(2a+3b⋮15\Rightarrow3\left(2a+3b\right)⋮15\Rightarrow6a+9b⋮15\)

Ta có:\(9a+6b+6a+9b=15a+15b=15\left(a+b\right)⋮15\)

\(6a+9b⋮15\Rightarrow9a+6b⋮15\left(đpcm\right)\)

 

11 tháng 10 2018

a/ Gọi 3 số nguyên liên tiếp là a; a+1; a+2.

Theo GT ta có : \(a+\left(a+1\right)+\left(a+2\right)=3a+3\)

=3(a+1) \(⋮3\)(vì \(3⋮3\))

Vậy tổng ba số nguyên liên tiếp là số chia hết cho 3.

b/ Gọi 4 số cần tìm là a ; a+1; a+2 ; a+3

Theo Gt ta có :a+(a+1)+(a+2)+(a+3) = 4a+6

=2(2a+3)\(⋮̸4\)( vì số chia hết cho 2 chưa chắc chia hết cho 4)

Vậy tổng của 4 số nguyên liên tiếp không chia hết cho 4.

11 tháng 10 2018

a) 3 số liên tiếp là: n, n+1, n+2. ( n thuộc N )

Ta có: n + (n+1) + (n+2)= 3n+3 = 3(n+1) chia hết cho 3

b) 4 số liên tiếp: n, n+1, n+2, n+3 (n thuộc N )

Ta có: n+(n+1)+(n+2)+(n+3)= 4n+6 ko chia hết cho 4 vì: 4n chia hết cho 4 nhưng 6 ko chia hết cho 4.

26 tháng 7 2015

1)

a= 140

b=74

 

28 tháng 11 2015

lm nhu the nao?????

nho các bạn giai jum` đi

 

16 tháng 11 2016

1 / 

Với công thức ab = ƯCLN(a; b).BCNN(a; b)

nên suy ra ƯCLN(a; b) = 2940 : 210 = 14

Vậy a = 14m ; b = 14 n                  (\(m\ge n\))

Thay vào a.b = 2940 được:

               14m.14n = 2940

            => m.n = 2940 : (14.14) = 15

Vì \(m\ge n\) nên 15 = 5.3 = 15.1

-Với m = 5 ; n = 3 thì a = 70 ; b = 42

-Với m = 15 ; n = 1 thì a = 210 ; b =1

2 / 

Gọi 5 số tự nhiên liên tiếp là a; a + 1; a + 2; a + 3; a + 4 

=> Tích của chúng là a(a+1)(a+2)(a+3)(a+4)

Trong tích của 5 số tự nhiên liên tiếp có ít nhất tích 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp chia hết cho 8 nên => a(a+1)(a+2)(a+3)(a+4) chia hết cho 8 (1)

Tích của 5 số tự nhiên liên tiếp thì luôn chia hết cho 5 (vì trong tích có ít nhất 1 số chia hết cho 5) => a(a+1)(a+2)(a+3)(a+4) chia hết cho 5 (2)

Trong tích của 5 số tự nhiên liên tiếp có tích của 3 STN liên tiếp. Tích của 3 STN liên tiếp thì chia hết cho 3 => a(a+1)(a+2)(a+3)(a+4) chia hết cho 3 (3)

Từ (1), (2), (3) và 8,3,5 là các số đôi một nguyên tố cùng nhau nền => a(a+1)(a+2)(a+3)(a+4) chia hết cho 8.5.3 = 120

Vậy tích 5 STN liên tiếp luôn chia hết cho 120.