Cho 2 số tự nhiên a>1, b>1 và UCLN(a;b)=1
Xét trường hợp A={ bx+1/ 0 bé hơn hoặc bằng x <a, x thuộc N}
Mọi người giải giúp em với ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Cách tính số tam giác biết số đường thẳng: Giả sử cho n đường thẳng, điều kiện là cứ 2 đường cho đúng 1 giao điểm
---> Cứ 3 đường thẳng cho 1 tam giác---> Số tam giác: \(\frac{\left(n-2\right)\left(n-1\right)n}{6}\)
Bài 1/ Vì 2 số cần tìm có ƯCLN là 6 nên ta đặt chúng là 6a và 6b
Vì 2 số đó không còn ước chung nào lớn hơn 6 nên ƯCLN(a,b)=1
Xét \(6a+6b=84\Rightarrow a+b=14\)mà (a,b)=1
\(\Rightarrow\left(a,b\right)=\left(1;13\right),\left(3;11\right),\left(5;9\right),\left(9;5\right),\left(11;3\right),\left(13;1\right)\)
---> Nhân 6 hết lên là ra kết quả cuối cùng.
Bài 2/ Tương tự bài 1 đặt 2 số càn tìm là \(a=16x\)và \(b=16y\)với (x,y)=1
Có \(ab=BCNN\left(a,b\right).ƯCLN\left(a,b\right)\Rightarrow16x.16y=240.16\Rightarrow xy=15\)
\(\Rightarrow\left(x,y\right)=\left(1;15\right),\left(3;5\right),\left(5;3\right),\left(15,1\right)\)--->Nhân 16 hết lên là xong
Bài 3/ Cũng tương tự mấy bài trên đặt \(a=16x\),\(b=16y\), với (x;y)=1
\(\Rightarrow6x.6y=216\Rightarrow xy=6\)
\(\Rightarrow\left(x,y\right)=\left(1;6\right),\left(2;3\right),\left(3;2\right),\left(6,1\right)\)---> Nhân 6 hết lên đi nha
Bài 4/ Tương tự phía trên \(ab=\left[a,b\right].\left(a,b\right)\Rightarrow\left(a,b\right)=\frac{ab}{\left[a,b\right]}=3\)
Vậy hiển nhiên là đặt \(a=3x,b=3y\)với (x,y)=1 roi.
\(\Rightarrow3x.3y=180\Rightarrow xy=20\)
\(\Rightarrow\left(x,y\right)=\left(1;20\right),\left(4;5\right),\left(5;4\right),\left(20,1\right)\)----> Nhân 3 hết lên mới được kết quả cuối cùng nha !!
Do ƯCLN(a; b)=16 => a = 16.m; b = 16.n [(m;n)=1; (m > n)]
Ta có: 16.m + 16.n = 128
=> 16.(m + n) = 128
=> m + n = 128 : 16 = 8
Mà m > n; (m;n)=1 => m = 7; n = 1 hoặc m = 5; n = 3
+ Với m = 7; n = 1 thì a = 16.7 = 112; b = 16.1 = 16
+ Với m = 5; n = 3 thì a = 16.5 = 80; b = 16.3 = 48
Vậy các cặp số (a;b) thỏa mãn đề bài là: (112;16) ; (80;48)
UCLN (a,b) - 6 nên a = 6a', b = 6b' và UCLN (a,b) = 1.
Theo đề bài a'b' = 63 =3.3.7
Do a > b nên a'>b'.' Chọn 2 số a' và b' có tích = 63, nguyên tố cùng nhau. a' > b' ta được.
a' | 63 | 9 |
b' | 1 | 7 |
Do đó.
a | 387 | 54 |
b | 6 | 42 |
Ta có
BCNN ( a , b ) . ƯCLN ( a , b ) = a . b = 12 . 336 = 4032
Vì ƯCLN ( a , b ) = 12
=> a = 12x , b = 12y , ( x , y ) = 1
Thay a = 12x , b = 12y vào a .b = 4032 ta được
12x . 12 y = 4032
12 . 12 . x .y = 4032
144 . x . y = 4032
x . y = 4032 : 144
x . y = 28
=> x , y thuộc Ư ( 28 ) = { 1,2,4,7,14,28 } mà ( x,y ) = 1 => ( x , y ) = ( 1,28 ) ; ( 28 , 1 ) ; ( 7,4 ) ; ( 4 , 7 )
Mà a > b => 12x > 12y => x > y => x thuộc { 28,7 }
+ Nếu x = 28 => a = 28 . 12 = 336 , y = 1 => b = 1.12 = 12
+ Nếu x = 7 => a = 7 . 12 = 84 , y = 4 => b = 4.12=48
Vậy ( a,b ) = ( 336 , 12 ) ; ( 84 , 48 )
Ta có:
\(BCNN\left(a,b\right).ƯCLN\left(a,b\right)=a.b=12.336=4032\)
Vì \(ƯCLN\left(a,b\right)=12\)
Đặt: \(a=12x;b=12y\)với \(ƯCLN\left(x,y\right)=1\)mà \(a.b=4032\)hay \(12x.12y=4032\)
\(144.\left(x.y\right)=4032\Rightarrow x.y=28\)
Các cặp số Nguyên tố cùng nhau có tích = 28 là: (28; 1); (7; 4)
Khi x = 28; y = 1 thì a = 336 ; b = 12
Khi x = 7; y = 4 thì a = 84; b = 48
Đặt a=18.x và b=18.y;UCLN(x,y)=1
Ta có:18.x.18.y=1944
=)x.y=1944:(18.18)=6 nên
x | 6 | 3 |
y | 1 | 2 |
Suy ra
a | 108 | 54 |
b | 6 | 36 |
1.
gọi UCLN(n+1;3n+4) là d
ta có :
n+1 chia hết cho d=>3(n+1) chia hết cho d =>3n+3 chia hết cho d
=>3n+4 chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+1;3n+4)=1
=>n+1;3n+4 là hai số nguyên tố cùng nhau
e viết rõ ràng hơn đi