a)tìm số tự nhiên a lẻ biết ƯCLN (120;a)= 15 và a<120
b) tìm số tự a lớn nhất biết 662: dư 11;787: a dư 10
các giải gấp giúp mik nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) a. b = ( a,b) . [a,b] = 6 . 120 = 720
+)Giả sử a<b
a = 6m Trong đó : ( m , n ) = 1 ; m < n
b = 6n
a. b = 6m .6n = 720
36 . m . n = 720
mn = 720 : 36 = 20
_" Tự làm nốt.
Do ƯCLN(a,b) = 12
=> a = 12 × a'; b = 12 × b' (a';b')=1
Ta có:
a + b = 120
12 × a' + 12 × b' = 120
12 × (a' + b') = 120
a' + b' = 120 : 12
a' + b' = 10
Giả sử a > b => a' > b' mà (a';b')=1 => a' = 9; b' = 1 hoặc a' = 7; b' = 3
+ Với a' = 9; b' = 1 => a = 108; b = 12
+ Với a' = 7; b' = 3 => a = 84; b = 36
Vậy các cặp giá trị a,b thỏa mãn là: (108;12) ; (84;36) ; (36;84) ; (12;108)
Do ƯCLN(a,b) = 12
=> a = 12 × a'; b = 12 × b' (a';b')=1
Ta có:
a + b = 120
12 × a' + 12 × b' = 120
12 × (a' + b') = 120
a' + b' = 120 : 12
a' + b' = 10
Giả sử a > b => a' > b' mà (a';b')=1 => a' = 9; b' = 1 hoặc a' = 7; b' = 3
+ Với a' = 9; b' = 1 => a = 108; b = 12
+ Với a' = 7; b' = 3 => a = 84; b = 36
Vậy các cặp giá trị a,b thỏa mãn là: (108;12) ; (84;36) ; (36;84) ; (12;108)
Các số \(⋮\)15 và < 120 : 15; 30; 45; 60; 75; 90; 105
Vì 15 + 105 = 120
Nên a = 15 và b = 105 hoặc a = 105 và b = 15
vì ước chung lớn nhất của a và b là 15 nên
a= 15m
b = 15n
và 15m + 15n = 120
=> m + n = 8
tự tìm cặp m,n rồi thử nha bn
Cm (a,b). [a,b]=a.b
giả sử a=<b
do (a, b) = 12 nên a = 12m; b = 12n (m ≤ n do a ≤ b) với m, n thuộc Z+; (m, n) =1.
TheođịnhnghĩaBCNN:
[a,b]=mnd=mn.12=240=>mn=20 =>m=1,n=20hoặcm=4,n=5 hoặc m=2, n=10 =>a=12, b=240 hoặc ....
a)Ta có :ƯCLN(a,b).BCNN(a,b)
= 12.240
=2880
Vì ƯCLN(A,B)=12
Suy ra a=12m
b=12n (m,n)=1
12m.12n=144.mn=2880
Suy ra mn=2880;144
mn=20
ta thấy 20=1.20=20.1=4.5=5.4
mặt khác ƯCLN(a,b)=1 và a<b nên ta có bảng sau
m | 1 | 20 | 4 | 5 |
n | 20 | 1 | 5 | 4 |
a | 12 | 240 | 48 | 60 |
b | 240 | 12 | 60 | 48 |
a, b: Bạn xem lại đề.
c.
Vì $ƯCLN(a,b)=12$ và $a>b$ nên đặt $a=12x, b=12y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:
$a+b=12x+12y=120\Rightarrow x+y=10$
Vì $x>y, (x,y)=1$ nên $x,y$ có thể nhận giá trị là:
$(x,y)=(9,1), (7,3)$
$\Rightarrow (a,b)=(108. 12), (84, 36)$
d.
Vì $ƯCLN(a,b)=28$ và $a>b$ nên đặt $a=28x, b=28y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:
$a+b=28x+28y=224$
$\Rightarrow x+y=8$
Vì $x>y$ và $(x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(7,1), (5,3)$
$\Rightarrow (a,b)=(196, 28), (140, 84)$