K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

A B C G M

Giải:

a, Ta có: \(AB^2+AC^2=6^2+8^2=100\)

\(BC^2=100\)

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A ( đpcm )

b, \(\Delta ABC\) vuông tại A có AM là trung tuyến

\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow AM=5\)

\(AG=\dfrac{2}{3}.AM\Rightarrow AG=\dfrac{10}{3}\left(cm\right)\)

Vậy...

4 tháng 5 2017

cam on ban

10 tháng 5 2016

A C B E D M H

Cô hướng dẫn nhé :)

Ta thấy \(\Delta EAD=\Delta BAC\) (Hai cạnh góc vuông)

nên góc AED bằng góc ABC. Lại có góc ABC bằng góc CAM  (cùng phụ góc ACB)

Vậy góc AED bằng góc MAE hay tam giác EMA cân tại M hay EM = MA.

Ta thấy góc MAD phụ góc MAC, góc MDA phụ góc MEA nên góc MAD bằng góc MDA, hay tam giác AMD cân tại M, từ đó MA = MD.

Tóm lại EM = MA = MD nên M là trung điểm ED, hay AM là trung tuyến cảu tam giác ACE.

Chúc em thi tốt :))

10 tháng 5 2016

A B C D E M H

9 tháng 4 2019

A, 

xét \(\Delta ABD\)và \(\Delta ACD\)

CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)

SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C)  (1)

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)

MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90

B,  (1) => BC=DC=1/2 BC=8

ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ

\(AB^2=AD^2+BD^2\)

=> AD^2=36

=>AD=6

9 tháng 4 2019

c, vì M là trọng tâm nên AM=2/3AD=4

d

25 tháng 5 2016

bạn vào đường link này http://olm.vn/hoi-dap/question/109042.html

25 tháng 5 2016

vì BD là trung tuyến của AD => BD vuông góc vs AD + 2 tam giác ABD và DBC đồng dạng
theo tam giác ABD áp dụng định lý pi-ta-go ta có: BD^2=AB^2+AD^2 => BD=5cm
mà 2 tam giác ABD vs DBC đồng dạng nên => BC=BD=5cm

a: Xét ΔAMB có MD là phân giác

nên AD/DB=AM/MB=AM/MC(1)

Xét ΔAMC có ME là phân giác

nen AE/EC=AM/MC(2)

Từ (1) và (2) suy ra AD/DB=AE/EC

hay DE//BC

b: \(\widehat{MDE}+\widehat{MED}=\widehat{DMB}+\widehat{EMC}\)

\(=\dfrac{1}{2}\cdot\left(\widehat{AMB}+\widehat{AMC}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

=>ΔDME vuông tại M 

c: Xét ΔABM có DI//BM

nên DI/BM=AD/AB(1)

Xét ΔACM có IE//CM

nên IE/CM=AE/AC(2)

Xét ΔABC có DE//BC

nên AD/AB=AE/AC(3)

Từ (1), (2)và (3) suy ra ID=IE

hay I là trung điểm của DE