a) TỨ giác ABOC là hình gì? vì sao?
b)tính số đo góc DOE
c0đoạn OA cắt (O) tại K.CM: K là tâm đường tròn nội tiếp tam giác ABC.tính bán kính của đường tròn này?
d) tính BK theo R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đường tròn (O’) cắt đường tròn (O ; OA) tại A và B nên OO’ là trung trực của AB
Suy ra : OO’ ⊥ AB (1)
Vì đường tròn (O’) cắt đường tròn (O ; OC) tại C và D nên OO’ là trung trực của CD
Suy ra : OO’ ⊥ CD (2)
Từ (1) và (2) suy ra : AB // CD.
a: ΔOAB cân tại O
mà OM là đường cao
nên OM là phân giác
Xét ΔOAM và ΔOBM có
OA=OB
góc AOM=góc BOM
OM chung
=>ΔOAM=ΔOBM
=>góc OBM=90 độ
=>MB là tiếp tuyến của (O)
b:F ở đâu vậy bạn?
Đáp số:a)12,56cm
b)bằng nhau các bạn nhớ k cho mình nha mình đang bị âm điểm ^_^
A B O M N
a, Chu vi của hình tròn tâm O là:
8 x 3,14 = 25,12 (cm)
Đường kính AO có độ dài là:
8 : 2 = 4 (cm)
Chu vi của hình tròn tâm M là:
4 x 3,14 = 12,56 (cm)
Đường kính OB có độ dài là:
8 - 4 = 4 (cm)
Chu vi của hình tròn tâm N là:
4 x 3,14 = 12,56 (cm)
b, Tổng chu vi của hai hình tròn tâm M và N là:
12,56 + 12,56 = 25,12 (cm)
Vì 25,12 = 25,12 (cm) nên tổng chu vi của hai hình tròn tâm M và N = chu vi hình tròn tâm O.
Đáp số: a, 25,12 cm; 12,56 cm; 12,56 cm
b, bằng nhau
a:
Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC; OA;AO lần lượt là phân giác của \(\widehat{BOC};\widehat{BAC}\)
Xét ΔOBA vuông tại B có \(cosBOA=\dfrac{OB}{OA}=\dfrac{1}{\sqrt{2}}\)
=>\(\widehat{BOA}=45^0\)
OA là phân giác của \(\widehat{BOC}\)
=>\(\widehat{BOC}=2\cdot\widehat{BOA}=90^0\)
Xét tứ giác OBAC có \(\widehat{OBA}=\widehat{BOC}=\widehat{OCA}=90^0\)
nên OBAC là hình chữ nhật
Hình chữ nhật OBAC có OB=OC
nên OBAC là hình vuông
b: Xét (O) có
DM,DB là tiếp tuyến
Do đó: OD là phân giác của góc BOM và DB=DM
Xét (O) có
EM,EC là tiếp tuyến
Do đó: EM=EC và OE là phân giác của góc MOC
\(\widehat{DOE}=\widehat{DOM}+\widehat{MOE}\)
\(=\dfrac{1}{2}\left(\widehat{BOM}+\widehat{MOC}\right)\)
\(=\dfrac{1}{2}\cdot\widehat{BOC}=\dfrac{1}{2}\cdot90^0=45^0\)
c: Gọi giao điểm của OA và BC là H
AB=AC
OB=OC
Do đó: OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
\(\widehat{KBA}+\widehat{KBO}=\widehat{OBA}=90^0\)
\(\widehat{CBK}+\widehat{BKO}=90^0\)(ΔBHK vuông tại H)
mà \(\widehat{OBK}=\widehat{OKB}\)(OK=OB)
nên \(\widehat{KBA}=\widehat{CBK}\)
=>BK là phân giác của góc ABC
Xét ΔABC có
BK,AK là các đường phân giác
Do đó: K là tâm đường tròn nội tiếp ΔABC