Bài 6: Cho đường tròn (O ; R) đường kính AB. Vẽ hai dây AB và CD cắt nhau tại điểm E nằm trong đường tròn.
a. Chứng minh rằng: EA.ED = EB.EC.
b. Chứng minh rằng: AE.AD + BE.BC không đổi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
TỪ (1) và (2) suy ra OM⊥AB
a: ΔOAC cân tại O
mà OD là đường cao
nên OD là phân giác của góc AOC
Xét ΔOAD và ΔOCD có
OA=OC
góc AOD=góc COD
OD chung
Do đó: ΔOAD=ΔOCD
=>góc OCD=90 độ
=>DC là tiếp tuyến của (O)
b: Xét ΔDCE và ΔDBC có
góc DCE=góc DBC
góc CDE chung
Do đó: ΔDCE đồng dạng với ΔDBC
=>DC/DB=DE/DC
=>DC^2=DB*DE
a:
Sửa đề: \(AD\cdot AC=AB^2=AO^2-R^2\)
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>BD\(\perp\)DC tại D
=>BD\(\perp\)CA tại D
Xét ΔBCA vuông tại B có BD là đường cao
nên \(AD\cdot AC=AB^2\left(1\right)\)
Xét ΔOBA vuông tại B có \(OB^2+BA^2=OA^2\)
=>\(BA^2+R^2=OA^2\)
=>\(BA^2=OA^2-R^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AC=AB^2=OA^2-R^2\)
b: ΔOBE cân tại O
mà OH là đường cao
nên H là trung điểm của BE
Xét ΔBCE có
O,H lần lượt là trung điểm của BC,BE
=>OH là đường trung bình của ΔBCE
=>OH//CE và OH=1/2CE
OH//CE
F\(\in\)OH
Do đó: HF//CE
\(OH=\dfrac{1}{2}CE\)
\(OH=\dfrac{1}{2}FH\)
Do đó: CE=FH
Xét tứ giác CEHF có
CE//HF
CE=HF
Do đó: CEHF là hình bình hành
Hình bình hành CEHF có \(\widehat{FHE}=90^0\)
nên CEHF là hình chữ nhật
ΔOBE cân tại O
mà OH là đường cao
nên OH là phân giác của góc BOE
Xét ΔOBA và ΔOEA có
OB=OE
\(\widehat{BOA}=\widehat{EOA}\)
OA chung
Do đó: ΔOBA=ΔOEA
=>\(\widehat{OBA}=\widehat{OEA}=90^0\)
=>AE là tiếp tuyến của (O)
c: Xét (O) có
ΔBGC nội tiếp
BC là đường kính
Do đó: ΔBGC vuông tại G
=>GB\(\perp\)GC tại G
Xét ΔHEC vuông tại E và ΔHGB vuông tại G có
\(\widehat{EHC}=\widehat{GHB}\)
Do đó: ΔHEC đồng dạng với ΔHGB
=>\(\dfrac{HE}{HG}=\dfrac{HC}{HB}\)
=>\(HE\cdot HB=HG\cdot HC\)
=>\(HG\cdot HC=HB^2\left(3\right)\)
Xét ΔBOA vuông tại B có BH là đường cao
nên \(HO\cdot HA=HB^2\left(4\right)\)
Từ (3) và (4) suy ra \(HG\cdot HC=HO\cdot HA\)
Đề bài chắc là: Vẽ hai dây AD và BC cắt nhau ở E. Lời giải như sau:
a. Do AB là đường kính nên các góc ACB, ADB vuông. Xét hai tam giác vuông ACE và BDE có \(\angle AEC=\angle BED\) (đối đỉnh), do đó \(\Delta ACE\sim\Delta BDE\) (g.g). Vậy \(\frac{AE}{BE}=\frac{CE}{DE}\to EA\cdot ED=EB\cdot EC.\)
b. Kẻ đường vuông góc \(EH\) với \(AB.\) Khi đó \(H\) thuộc đoạn thẳng \(AB.\)
Ta có \(\Delta AEH\sim\Delta ABD\left(g.g.\right)\to\frac{AE}{AB}=\frac{AH}{AD}\to AE\cdot AD=AB\cdot AH.\)
Tương tư, \(\Delta BEH\sim\Delta BAC\left(g.g\right)\to\frac{BE}{BA}=\frac{BH}{BC}\to BE\cdot BC=BA\cdot BH.\)
Cộng hai đẳng thức lại ta được, \(AE\cdot AD+BE\cdot BC=AB\cdot AH+AB\cdot BH=AB\left(AH+BH\right)=AB^2.\) Suy ra
\(AE\cdot AD+BE\cdot BC=AB^2\) không đổi. (ĐPCM)