K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2023

a: Xét (O) có

ΔAMB nội tiếp 

AB là đường kính

Do đó: ΔAMB vuông tại M

Ta có: ΔMAB vuông tại M

=>\(MA^2+MB^2=AB^2\)

=>\(AB^2=3^2+4^2=25\)

=>AB=5(cm)

Xét ΔMAB vuông tại M có MH là đường cao

nên \(MH\cdot AB=MA\cdot MB\)

=>\(MH\cdot5=3\cdot4=12\)

=>\(MH=\dfrac{12}{5}=2,4\left(cm\right)\)

b: Ta có: ΔAMB vuông tại M

=>AM\(\perp\)MB tại M

=>AM\(\perp\)BC tại M

=>ΔAMC vuông tại M

Ta có: ΔMAC vuông tại M

mà MN là đường trung tuyến

nên MN=NA=NC

Xét ΔNAO và ΔNMO có

OA=OM

NA=NM

NO chung

Do đó: ΔNAO=ΔNMO

=>\(\widehat{NAO}=\widehat{NMO}\)

mà \(\widehat{NAO}=90^0\)

nên \(\widehat{NMO}=90^0\)

=>NM là tiếp tuyến của (O)

c: Xét (O) có

DM,DB là các tiếp tuyến

Do đó: DM=DB và OD là phân giác của góc MOB

OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

Ta có: ΔNAO=ΔNMO

=>\(\widehat{AON}=\widehat{MON}\)

mà tia ON nằm giữa hai tia OA,OM

nên ON là phân giác của góc AOM

=>\(\widehat{AOM}=2\cdot\widehat{NOM}\)

Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{NOM}+\widehat{DOM}\right)=180^0\)

=>\(2\cdot\widehat{NOD}=180^0\)

=>\(\widehat{NOD}=\dfrac{180^0}{2}=90^0\)

Xét ΔNOD vuông tại O có OM là đường cao

nên \(OM^2=MN\cdot MD\)

=>\(NA\cdot BD=OM^2=R^2\)

23 tháng 2 2018

a) A,M, B.                      

b) N, E.               

c) Q, P.

d) MA, MB.                  

e) AB

11 tháng 8 2017

a) A, B, C, D                 

b) G, H                

c) I, F

d) AB, CD

e) BE

10 tháng 4 2018

a) A, B, C, D         

b) G, H                

c) I, F

d) AB, CD

e) BE.

30 tháng 10 2018

a) A,M, B.

b) N, E.

c) Q, P.

d) MA, MB.

e) AB

30 tháng 5 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Đường tròn (O’) tiếp xúc trong với đường tròn (O).

28 tháng 6 2017

a) M, BN, C, D              

b) B, K                

c) A, I, G

d)  CN

e) MN

17 tháng 9 2019

a) M, BN, C, D

b) B, K                

c) A, I, G

d)  CN

e) MN.