cho tam giac DEF cân tại D.trên cạnh DE,DF lấy K;H sao cho DK=dh.gọi i là giao điểm của eh và fk.chứng minh a,tam giác ìe cân tại i b,i cách đều 2 cạnh de và df c,di đi qua trung điểm của ef và vuông góc với ef
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDKE và ΔDHF có
DK=DH
góc D chung
DE=DF
=>ΔDKE=ΔDHF
=>KE=HF
b: Xét ΔOHE và ΔOKF có
góc OHE=góc OKF
HE=KF
góc OEH=góc OFK
=>ΔOHE=ΔOKF
c: DE=DF
OE=OF
=>DO là trung trực của EF
=>DO vuông góc EF
góc FDE=góc FKE=90 độ
=>FDKE nội tiếp
=>góc PKD=góc PFE=45 độ
=>góc PKD=1/2*góc PKF
=>KD là phân giác của góc PKF
a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)
hay\(5^2=3^2+DF^2\)
\(\Rightarrow DF^2=5^2-3^2=25-9=16\)
\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)
Ta có:\(DE=3cm\)
\(DF=4cm\)
\(EF=5cm\)
\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)
b)Xét\(\Delta DEF\)và\(\Delta DKF\)có:
\(DE=DK\)(\(D\)là trung điểm của\(EK\))
\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)
\(DF\)là cạnh chung
Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)
\(\Rightarrow EF=KF\)(2 cạnh t/ứ)
Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)
Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)
c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
Ta lại có:\(DF\)cắt\(KI\)tại\(G\)
mà\(DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)
\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))
\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)
Vậy\(GF\approx2,7cm\)
xét tam giác DEI và DFK, ta có:
DE=DF (giả thuyết)
góc DEI= góc DFK( 2 góc đáy tam giác cân)
EI=KF (giả thuyết)
=> tam giác DEI= tam giác DFK (cgc)
=>DI=DK
Ta có tam giác DEF cân tại D =>góc E=góc F
Xét tam giác DEI và tam giác DFK có:
góc E=góc F
DE=DF(gt)
EI=KF(gt)
Suy ra: tam giác DEI = tam giác DFK (c-g-c)
=>DI=DK(2 cạnh tương ứng)
Sửa đề: IK//DH
a: Xét ΔDEF vuông tại D và ΔHED vuông tại H có
góc E chung
=>ΔDEF đồng dạng với ΔHED
=>DF/DH=EF/DE=DE/HE
=>EH*EF=ED^2
b: Xét ΔFIK vuông tại I và ΔFDE vuông tại D có
góc F chung
=>ΔFIK đồng dạng với ΔFDE
=>FI/FD=FK/FE
=>FI*FE=FK*FD
c: góc KDE+góc KIE=180 độ
=>KDEI nội tiếp
=>góc DKE=góc DIE và góc DEK=góc DIK
mà góc DIE=góc DIK
nên góc DKE=góc DEK
=>ΔDEK cân tại D
a) Xét ΔDEF có DE=DF(gt)
nên ΔDEF cân tại D(Định nghĩa tam giác cân)
⇒\(\widehat{DEF}=\widehat{DFE}\)(hai góc ở đáy)
hay \(\widehat{MEF}=\widehat{NFE}\)
Ta có: DM+ME=DE(M nằm giữa D và E)
DN+NF=DF(N nằm giữa D và F)
mà DM=DN(gt)
và DE=DF(gt)
nên ME=NF
Xét ΔMEF và ΔNFE có
ME=NF(cmt)
\(\widehat{MEF}=\widehat{NFE}\)(cmt)
EF chung
Do đó: ΔMEF=ΔNFE(c-g-c)
⇒FM=EN(hai cạnh tương ứng)