cho điểm a nằm ngoài đt. Từ A ke 2 tiếp tuyến AB,AC và cát tuyến ADE tới đt (O) trong đó (B,C là tiếp điểm ;D nằm giữa A và E .Gọi h là giao điểm AO và BC.
CM : AH.AO=AD.AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có góc OIA= góc OBA= góc OCA=90 độ
=> đỉnh I,B,C cùng nhìn cạnh AO dưới 1 góc khổng đổi
=> O,I,B,A,C cùng thuộc 1 đường tròn
=>ABIC và OICA nội tiếp
Cậu ơi cái BDIC nội tiếp là k chứng minh đc nha cậu tớ thử nhiều cách rồi
a: ΔOED cân tại O có OF là trung tuyến
nên OF vuông góc ED
góc OFA=góc OBA=góc OCA=90 độ
=>O,F,B,A,C cùng thuộc 1 đường tròn
b: góc DHC=góc CBA
góc CBA=góc DFC
=>góc DHC=góc DFC
a: Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC tại trung điểm H của BC
Gọi K là giao điểm của OS và ED
Xét (O) có
SE,SD là các tiếp tuyến
Do đó: SE=SD
=>S nằm trên đường trung trực của ED(3)
Ta có: OE=OD
=>O nằm trên đường trung trực của ED(4)
Từ (3) và (4) suy ra SO là đường trung trực của ED
=>SO\(\perp\)ED tại trung điểm K của ED
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=R^2\left(5\right)\)
Xét ΔODS vuông tại D có DK là đường cao
nên \(OK\cdot OS=OD^2=R^2\left(6\right)\)
Từ (5) và (6) suy ra \(OH\cdot OA=OK\cdot OS\)
=>\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)
Xét ΔOHS và ΔOKA có
\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)
góc HOS chung
Do đó: ΔOHS đồng dạng với ΔOKA
=>\(\widehat{OHS}=\widehat{OKA}\)
=>\(\widehat{OHS}=90^0\)
=>HO\(\perp\)SH tại H
mà HO\(\perp\)BH tại H
và SH,BH có điểm chung là H
nên S,H,B thẳng hàng
mà H,B,C thẳng hàng
nên S,B,H,C thẳng hàng
=>S,B,C thẳng hàng