cho tam giác ABC có 3 góc nhọn.Dựng ra phía ngoài 2 tam giác vuông cân đỉnh A là ABD;ACE.Gọi M;N;P lần lượt là trung điểm của BC;BD;CE
a)BE=CD BE vuông góc với CD
b)Tam giác MNP vuông cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phép quay tâm A góc quay 60 o biến D thành B và biến C thành E, suy ra phép quay đó biến đường thẳng DC thành đường thẳng BE suy ra góc giữa DC và BE bằng góc quay 60 o .
Chọn đáp án B.
a ) Xét góc DAC và góc EAB có
góc ADC = 90 độ + góc ABC (gt) (1)
góc ABE = 90 độ +góc BAC (2)
từ (1) và (2) => góc DAC = góc EAB
Xét tam giác DAC và tam giác EAB có
AD =AB ( vì tam giác ABD vuông cân )
góc DAC = góc BAE
AC =AE
=> tam giác DAC = tam giác EAB ( cạnh - góc - cạnh )
=> DC=EB ( cặp cạnh tương ứng )
+> chứng minh BE vuông góc với CD
Gọi O là giao điểm của DC và BE
Vì góc O1 = O2 ( đối đỉnh )
góc C1 = E1 ( vì tam giác DAC = tam giác EAB ( cmt )
=> góc O = A1 = 90 độ
=> CD vuông góc với BE ( điều phải chứng minh )
Đáp án B
Xét phép quay tâm A góc quay 60 ° biến D thành B và biến C thành E, suy ra phép quay đó biến đường thẳng CD thành đường thẳng BE suy ra góc giữa BE và CD bằng góc quay 60 °