K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

A=1.2+2.3+3.4+4.5+5.6+...+2016.2017

=> 3A = 1.2.3+2.3.3+3.4.3+4.5.3+5.6.3+.......+2016.2017.3

=> 3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + 4.5.(6-3) + .......+ 2016.2017.(2018-2015)

=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +..........+ 2016.2017.2018 - 2015.2016.2017

=> 3A = 2016.2017.2018

=> A =  2016.2017.2018 : 3

30 tháng 7 2016

Ta thấy:Các số trong dãy số trên cách nhau 1,1 đơn vị.

Số các số hạng là:

       ( 2016,2017 - 1,2 ) : 1,1 + 1 = 1832,819727 ( số )

Tổng là:

        ( 2016,2017 + 1,2 ) x 1832,819727 : 2 = 1848766,817

                              Đ/S: số trên dài wóa :))

26 tháng 1 2017

A = 1.2+2.3+3.4+......+99.100 
Gấp A lên 3 lần ta có: 
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3 
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98) 
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100 
A . 3 = 99.100.101 
A = 99.100.101 : 3 
A = 33.100.101 
A = 333 300

19 tháng 2 2020

Ta có: A = 1.2 + 2.3 + 3.4 + 4.5 +....+ 98.99

⇒⇒ 3A = 1.2.3 + 2.3.3 + 3.4.3 + 4.5.3 +....+ 98.99.3

⇒⇒ 3A = 1.2.3 + 2.3(4-1) + 3.4(5-2) + 4.5(6-3) +.....+ 98.99(100-97)

⇒⇒ 3A = 1.2.3 + 2.3.4 - 2.3.1 + 3.4.5 - 3.4.2 + 4.5.6 - 4.5.3 + ....+ 98.99.100 - 98.99.97

⇒⇒ 3A = 98.99.100

⇒⇒ A = 98.99.100398.99.1003 = 323400

b, tự giải nhé

19 tháng 2 2020

 chia 3 nữa nhé thiếu

19 tháng 2 2020

a, A = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10 + 10.11

= (1.2 + 2.3) + (3.4 + 4.5) + (5.6 + 6.7) + (7.8 + 8.9) + (9.10 + 10.11)

= 2( 1 + 3) + 4( 3 + 5) + 6( 5 + 7) + 8 ( 7 + 9) + 10( 9 + 11)

= 2.4 + 4.8 + 6.12 + 8.16 + 10.20 = 2.2.2 + 2.4.4 + 2.6.6 + 2.8.8 + 2.10.1

b,tương tự nhé

17 tháng 9 2015

Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
 3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101  3S = 3.33.100.101 
 S=33.100.101= 333300

6 tháng 8

Đặt

S= 1.2 + 2.3 + 3.4 + ...+ 99.100  

3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3

3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)

3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100

3S = 99.100.101  3S = 3.33.100.101  

S=33.100.101= 333300

6 tháng 2 2023

A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9

A=1/3-1/9

A=2/9

6 tháng 2 2023

các câu 2;3 còn lại giống câu 1 bạn nhé

bạn thay số vào rồi làm tương tự

14 tháng 7 2015

 

A=1.2+2.3+3.4+4.5+...+2014.2015

=>3A=1.2.3+2.3.3+3.4.3+4.5.3+...+2014.2015.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+2014.2015.(2016-2013)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+2014.2015.2016-2013.2014.2015

=(1.2.3-1.2.3)+(2.3.4-2.3.4)+(3.4.5-3.4.5)+(4.5.6-4.5.6)+...+(2013.2014.2015-2013.2014.2015)+0.1.2+2014.2015.2016

=0+2014.2015.2016

=>A=\(\frac{2014.2015.2016}{3}\)

15 tháng 2 2017

S = 1.2 + 2.3 + ... + 99.100

4S = 1.2.(3 - 0) + 2.3.(4 - 1) + ... + 99.100.(101 - 98)

4S = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 +...+ 99.100.101 - 98.99.100

4S = (1.2.3 + 2.3.4 +...+ 99.100.101) - (0.1.2 + 1.2.3 +...+ 98.99.100)

4S = 99.100.101 - 0.1.2

4S = 99.100.101

S = 99.25.101

S = 249975

15 tháng 2 2017

\(S=1.2+2.3+3.4+4.5+5.6+...+99.100\)

\(3S=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3\)

\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+4.5.\left(6-3\right)+...+99.100.\left(101-98\right)\)\(1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101+98.99.100\)

\(3S=\left(1.2.3-1.2.3\right)+\left(2.3.4-2.3.4\right)+...+\left(98.99.100-98.99.100\right)+99.100.101\)

\(3S=99.100.101=9999000\)

\(S=9999000:3=3333000\)

\(\Rightarrow S=3333000\)

18 tháng 7 2015

Áp dụng công thức ta có :

\(A=1.2+2.3+3.4+...+99.100=\frac{99.100.101}{3}=333300\)

18 tháng 7 2015

A=1.2+2.3+3.4+4.5+.....+98.99+99.100 Rút gọn đi ta còn:

A=1+100

=>A=101