So sánh A và B biết : \(A=\frac{2012^{2012}+1}{2012^{2013}+1};B=\frac{2012^{2011}+1}{2012^{2012}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ÁP DỤNG CÔNG THỨC NẾU \(\frac{a}{b}\)>1 thì
\(\frac{a}{b}\)>\(\frac{a+m}{b+m}\)
Ta có : \(\frac{2012^{12}+1}{2012^{13}+1}\)>\(\frac{2012^{12}+1+2011}{2012^{13}+1+2011}\)=\(\frac{2012^{12}+2012}{2012^{13}+2012}\)=\(\frac{2012.\left(2012^{11}+1\right)}{2012.\left(2012^{12}+1\right)}\)
rồi rút gọn thành \(\frac{2012^{11}+1}{2012^{12}+1}=B\)
Vậy A>B
Nhớ cho mình đúng nha
Ta có:\(A=\dfrac{2012^{2012}+1}{2012^{2013}+1}\)
\(\Rightarrow2012.A=\dfrac{2012^{2013}+2012}{2012^{2013}+1}=\dfrac{2012^{2013}+1+2011}{2012^{2013}+1}=1+\dfrac{2011}{2012^{2013}+1}\)Ta có:\(B=\dfrac{2012^{2011}+1}{2012^{2012}+1}\)
\(\Rightarrow2012.B=\dfrac{2012^{2012}+2012}{2012^{2012}+1}=\dfrac{2012^{2012}+1+2011}{2012^{2012}+1}=1+\dfrac{2011}{2012^{2012}+1}\)Vì\(\dfrac{2011}{2012^{2013}+1}< \dfrac{2011}{2012^{2012}+1}\)
\(\Rightarrow1+\dfrac{2011}{2012^{2013}+1}< 1+\dfrac{2011}{2012^{2012}+1}\)
\(\Rightarrow\dfrac{2012^{2012}+1}{2012^{2013}+1}< \dfrac{2012^{2011}+1}{2012^{2012}+1}\)
Vậy A<B
A=\(\frac{2012^{2012}+1}{2012^{2013}+1}\)
\(\Rightarrow\)A<\(\frac{2012^{2012}+1+2011}{2012^{2013}+1+2011}\)
<\(\frac{2012^{2012}+2012}{2012^{2013}+2012}\)
<\(\frac{2012\left(2012^{2011}+1\right)}{2012\left(2012^{2012}+1\right)}\)
<\(\frac{2012^{2011}+1}{2012^{2012}+1}\)
<B
Vậy A<B
Áp dụng BĐT \(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}>\frac{a+b+c}{a+b+c}=1>\frac{a+b+c}{b+c+d}\).
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2010+2011+2012}>\frac{2010+2011+2012}{2011+2012+2013}\)mà 2010 + 2011 + 2012 < 2011+2012+2013 ,suy ra \(\frac{2010+2011+2012}{2011+2012+2013}< 1\))
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\)hay P > Q
Vậy P > Q
b) Áp dụng công thức BCNN (a, b) . UCLN (a,b) = a.b
\(\Rightarrow a.b=420.21=8820\)
Ta có:
\(ab=8820\)
\(a+21=b\Rightarrow b-a=21\)
Hai số cách nhau 21 mà có tích là 8820 là 84 , 105
Mà a + 21 = b suy ra a < b
Vậy a = 84 ; b = 105
a,-Cách khác:
-Ta có: \(\frac{2010+2011+2012}{2011+2012+2013}=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
-Mà: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\left(1\right)\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\left(2\right)\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\left(3\right)\)
\(\Rightarrow P>Q\)
Gọi 2011 là a
2012 là b;2013 là c
=>\(A=\frac{2011}{2012}+\frac{2012}{2013}=\frac{a}{b}+\frac{b}{c}\);\(B=\frac{2011+2013}{2012+2013}=\frac{a+c}{b+c}\)
=>\(A=\frac{a}{b}+\frac{b}{c}=\frac{ac+b^2}{bc}\)\(=\frac{\left(ac+b^2\right).\left(b+c\right)}{bc.\left(b+c\right)}\);\(B=\frac{a+c}{b+c}=\frac{\left(a+c\right).bc}{bc.\left(b+c\right)}\)
b+c>a+c;b2+ac>bc
Vậy A>B
\(10A=\frac{2012^{2013}+10}{2012^{2013}+1}=\frac{2012^{2013}+1+9}{2012^{2013}+1}=1+\frac{9}{2012^{2013}+1}\)
\(10B=\frac{2012^{2012}+10}{2012^{2012}+1}=\frac{2012^{2012}+1+9}{2012^{2012}+1}=1+\frac{9}{2012^{2012}+1}\)
Vì \(\frac{9}{2012^{2013}+1}<\frac{9}{2012^{2012}+1}\Rightarrow10A<10B\Rightarrow A\)
Vậy A<B
ta co A=\(\frac{2012^{2012}+1}{2012^{2013}+1}< \frac{2012^{2012}+1+2011}{2012^{2013}+1+2011}\)=\(\frac{2012^{2012}+2012}{2012^{2013}+2012}=\frac{2012\left(2012^{2011}+1\right)}{2012\left(2012^{2012}+1\right)}\)
=>A<B