So sánh A và B
\(A=\frac{10^{2011}+1}{10^{2012}+1};B=\frac{10^{2012}+1}{10^{2013}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{10^{2011}+1}{10^{2012}+1}< 1\)
=> \(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+1+9}{10^{2012}+1+9}=\frac{10^{2011}+10}{10^{2012}+10}=\frac{10\left(10^{2010}+1\right)}{10\left(10^{2011}+1\right)}=\frac{10^{2010}+1}{10^{2011}+1}=A\)
Vậy A > B
\(B< \frac{10^{2012}+1+9}{10^{2013}+1+9}=\frac{10^{2012}+10}{10^{2013}+10}=\frac{10\left(10^{2011}+1\right)}{10\left(10^{2012}+1\right)}=\frac{10^{2011}+1}{10^{2012}+1}=A\)
Vậy A > B
Áp dụng bất đẳng thức :
\(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
Ta có :
\(B=\frac{10^{2012}+1}{10^{2013}+1}< \frac{10^{2012}+1+9}{10^{2013}+1+9}=\frac{10^{2012}+10}{10^{2013}+10}=\frac{10\left(10^{2011}+1\right)}{10\left(10^{2012}+1\right)}=\frac{10^{2011}+1}{10^{2012}+1}=A\)
\(\Leftrightarrow B< A\)
a) \(\frac{2^{10}+1}{2^{10}-1}\)và \(\frac{2^{10}-1}{2^{10}-3}\)
Ta có chính chất phân số trung gian là \(\frac{2^{10}+1}{2^{10}-3}\)
\(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}\) ; \(\frac{2^{10}-1}{2^{10}-3}< \frac{2^{10}+1}{2^{10}-3}\)
Vì \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}>\frac{2^{10}-1}{2^{10}-3}\)
Nên \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}-1}{2^{10}-3}\)
b) \(A=\frac{2011}{2012}+\frac{2012}{2013}\)và \(B=\frac{2011+2012}{2012+2013}\)
Ta có : \(A=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}=B\)
Vậy A > B
Có gì sai cho sorry
a,
\(\frac{2^{10}+1}{2^{10}-1}=1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}=\frac{2^{10}-1}{2^{10}-3}\)
b,
\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
\(=>B=\frac{10^{2012}+1}{10^{2013}+1}< \frac{10^{2012}+1+9}{10^{2013}+1+9}\)
\(< \frac{10^{2012}+10}{10^{2013}+10}\)
\(< \frac{10.\left(10^{2011}+1\right)}{10.\left(10^{2012}+1\right)}\)
\(< \frac{10^{2011}+1}{10^{2012}+1}=A\)
=> B < A
Ủng hộ mk nha ^_-
Cho C=\(10^{2010}+\frac{1}{10^{2010}}\)
Xét \(A_1=10^{2010}+\frac{1}{10^{2011}}\)và \(B^{ }_1=10^{2011}+\frac{1}{10^{2012}}\)
Ta có \(A_1-C=10^{2010}+\frac{1}{10^{2010}}-10^{2010}-\frac{1}{10^{2010}}\)
\(A_1-C=10.\left(\frac{1}{10^{2011}}-\frac{1}{10^{2010}}\right)\)
Giair tượng tự ta được \(B_1-C=10^{2010}.\left(9+\frac{1}{10^{2012}}-\frac{1}{10^{2010}}\right)\)
Ta thấy \(\frac{1}{10^{2012}}-\frac{1}{10^{2010}}
a) Ta có :
\(A=\frac{10^{2010}+1}{10^{2011}+1}\)
\(\Rightarrow10A=\frac{10^{2011}+10}{10^{2011}+1}=\frac{\left(10^{2011}+1\right)+9}{10^{2011}+1}=1+\frac{9}{10^{2011}+1}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}\)
\(\Rightarrow10B=\frac{10^{2012}+10}{10^{2012}+1}=\frac{\left(10^{2012}+1\right)+9}{10^{2012}+1}=1+\frac{9}{10^{2012}+1}\)
Vì \(\frac{9}{10^{2011}+1}>\frac{9}{10^{2012}+1}\)nên \(10A>10B\)
\(\Rightarrow A>B\)
Vậy : \(A>B\)
b) Ta có :
\(\left(\frac{-1}{2}\right)^{11}=\frac{-1^{11}}{2^{11}}=\frac{-1}{2^{11}}\)
\(\left(\frac{-1}{2}\right)^{13}=\frac{-1^{13}}{2^{13}}=\frac{-1}{2^{13}}\)
Vì \(\frac{-1}{2^{11}}>\frac{-1}{2^{13}}\)nên \(\left(\frac{-1}{2}\right)^{11}>\left(\frac{-1}{2}\right)^{13}\)
Vậy : \(\left(\frac{-1}{2}\right)^{11}>\left(\frac{-1}{2}\right)^{13}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+1+9}{10^{2012}+1+9}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+10}{10^{2012}+10}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10\cdot\left(10^{2010}+1\right)}{10\cdot\left(10^{2011}+1\right)}=\frac{10^{2010}+1}{10^{2011}+1}=A\)
Vậy : B < A
A < B nha!