So sánh A và B biết:
\(A=\dfrac{20^{18}+1}{20^{19}+1};B=\dfrac{20^{17}+1}{20^{18}+1}\)
Giải nhanh giúp mình nha!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{20^{19}+1}{20^{20}+1}< \dfrac{20^{19}+1+19}{20^{20}+1+19}=\dfrac{20^{19}+20}{20^{20}+20}\)
\(B< \dfrac{20.\left(20^{18}+1\right)}{20.\left(20^{19}+1\right)}\)
\(B< \dfrac{20^{18}+1}{20^{19}+1}\)
\(B< A\)
a) \(\dfrac{17}{20}< \dfrac{18}{20}< \dfrac{18}{19}\Rightarrow\dfrac{17}{20}< \dfrac{18}{19}\)
b) \(\dfrac{19}{18}>\dfrac{19+2024}{18+2024}=\dfrac{2023}{2022}\Rightarrow\dfrac{19}{18}>\dfrac{2023}{2022}\)
c) \(\dfrac{135}{175}=\dfrac{27}{35}\)
\(\dfrac{13}{17}=\dfrac{26}{34}< \dfrac{26+1}{34+1}=\dfrac{27}{35}\)
\(\Rightarrow\dfrac{13}{17}< \dfrac{135}{175}\)
#)Giải :
\(A=\frac{20^{18}+1}{20^{19}+1}\)và \(B=\frac{20^{17}+1}{20^{18}+1}\)
\(A=\frac{20^{18}+1}{20^{18+1}+1}\)và \(B=\frac{20^{17}+1}{20^{17+1}+1}\)
\(A=\frac{1}{20+1}\)và \(B=\frac{1}{20+1}\)
\(A=\frac{1}{21}\)và \(B=\frac{1}{21}\)
\(\Rightarrow A=B\)
#~Will~be~Pens~#
A>2018 +1+19/2019 +1+19
A>2018+20/2019+20
A>20(2017+1)/20(2018+1)
A>2017+1/2018+1
=>A>B
Chúc bạn học tốt
Giải:
a) A=1718+1/1719+1
17A=1719+17/1719+1
17A=1719+1+16/1719+1
17A=1+16/1719+1
Tương tự:
B=1717+1/1718+1
17B=1718+17/1718+1
17B=1718+1+16/1718+1
17B=1+16/1718+1
Vì 16/1719+1<16/1718+1 nên 17A<17B
⇒A<B
b) A=108-2/108+2
A=108+2-4/108+2
A=1+-4/108+2
Tương tự:
B=108/108+4
B=108+4-4/108+1
B=1+-4/108+1
Vì -4/108+2>-4/108+1 nên A>B
c)A=2010+1/2010-1
A=2010-1+2/2010-1
A=1+2/2010-1
Tương tự:
B=2010-1/2010-3
B=2010-3+2/2010-3
B=1+2/2010-3
Vì 2/2010-3>2/2010-1 nên B>A
⇒A<B
Chúc bạn học tốt!
17A=1719+1+16/1719+1
17A=1+16/1719+1
phần in nghiêng mình không hiểu lắm, bn giải thích cho mình được ko?
\(A=\dfrac{113^{20}+113-112}{113^{19}+1}=113-\dfrac{112}{113^{19}+1}\)
\(B=\dfrac{113^{19}+113-112}{113^{18}+1}=113-\dfrac{112}{113^{18}+1}\)
mà \(113^{19}+1>113^{18}+1\)
nên \(A>B\)
Giải:
Ta có:
A=2010+1/2010-1
A=2010-1+2/2010-1
A=1+2/2010-1
Tương tự:
B=2010-1/2010-3
B=2010-3+2/2010-3
B=1+2/2010-3
Vì 2/2010-1<2/2010-3 nên A<B
Chúc bạn học tốt!
So sánh A=\(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{2021}\)và B=20. So sánh A và B
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}\left(19SH\right)\)
\(\Rightarrow\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+..+\frac{1}{20}>\frac{19}{20}\)
Vậy ................
Đặt \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\) ta có :
\(A>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)
Do có \(20-2+1=19\) phân số \(\frac{1}{20}\) nên :
\(A>19.\frac{1}{20}=\frac{19}{20}\)
Vậy \(A>\frac{19}{20}\)
Chúc bạn học tốt ~
Ta có: \(20A=\dfrac{20^{19}+20}{20^{19}+1}=1+\dfrac{19}{20^{19}+1}\)
\(20B=\dfrac{20^{18}+20}{20^{18}+1}=1+\dfrac{19}{20^{18}+1}\)
Vì \(\dfrac{19}{20^{19}+1}< \dfrac{19}{20^{18}+1}\Rightarrow1+\dfrac{19}{20^{19}+1}< 1+\dfrac{19}{20^{18}+1}\)
\(\Rightarrow20A< 20B\Rightarrow A< B\)
Vậy A < B
Ta có: \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+c}\)(a \(\in\) N và b,c,d \(\in\) N*)
Áp dụng kiến thức đó, ta được:
A = \(\dfrac{20^{18}+1}{20^{19}+1}\) <\(\dfrac{20^{18}+1+19}{20^{19}+1+19}\)= \(\dfrac{20^{18}+20}{20^{19}+20}\) = \(\dfrac{20\left(20^{17}+1\right)}{20\left(20^{18}+1\right)}\)
= \(\dfrac{20^{17}+1}{20^{18}+1}\) = B
Vậy A < B