Cho tam giác ABC có tia phân giác của góc B cắt AC tại K.Ở phía ngoài vẽ tia Ax sao cho Ax vuông góc với AB;Ay vuông góc với AC
Trên tia Ax lấy điểm D sao cho AD = AB;Trên tia Ay lấy điểm E sao cho AE = AC
Chứng minh : BE=CD;BE vuông góc với CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AIC và tam giác BIH có:
\(\widehat{AIC}=\widehat{BIH}\)(đối đỉnh)
\(\widehat{ACI}=\widehat{BHI}=90^0\)
\(\Rightarrow\Delta AIC\sim\Delta BIH\left(g.g\right)\)
Câu b em xem lại đề nhé ! Sao AC=15cm và AC=25cm được nhỉ ?
a: Xét ΔACI vuông tại C và ΔBHI vuông tại H có
\(\widehat{AIC}=\widehat{BIH}\)(hai góc đối đỉnh)
Do đó: ΔACI~ΔBHI
b: Ta có: ΔCAB vuông tại C
=>\(CA^2+CB^2=AB^2\)
=>\(CB^2=25^2-15^2=400\)
=>\(CB=\sqrt{400}=20\left(cm\right)\)
Xét ΔABC có AI là phân giác
nên \(\dfrac{CI}{CA}=\dfrac{BI}{BA}\)
=>\(\dfrac{CI}{15}=\dfrac{BI}{25}\)
=>\(\dfrac{CI}{3}=\dfrac{BI}{5}\)
mà CI+BI=CB=20cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{CI}{3}=\dfrac{BI}{5}=\dfrac{CI+BI}{3+5}=\dfrac{20}{8}=2,5\)
=>\(CI=2,5\cdot3=7,5\left(cm\right)\)
c: Ta có: ΔACI~ΔBHI
=>\(\widehat{CAI}=\widehat{HBI}\)
mà \(\widehat{CAI}=\widehat{BAH}\)
nên \(\widehat{HBI}=\widehat{HAB}\)
Xét ΔHBI vuông tại H và ΔHAB vuông tại H có
\(\widehat{HBI}=\widehat{HAB}\)
Do đó: ΔHBI~ΔHAB
=>\(\dfrac{HB}{HA}=\dfrac{HI}{HB}\)
=>\(HB^2=HI\cdot HA\)
a: Xet ΔACB có
BD,AI là phân giác
=>I là tâm đường tròn nội tiếp
=>I cách đều ba cạnh
b: góc IBC+góc ICB=90/2=45 độ
=>góc BIC=135 độ