cho tam giác nhọn ABC. Kẻ AH \(\perp\)BC (H\(\in\)BC). Biết AB = 13cm;AH = 12cm và HC = 16 cm. Tính chu vi tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Hình bạn tự vẽ nhé.
Xét tam giác ACH vuông tại H có:
AH2 + CH2 = AC2 (định lí Pytago)
AC2 = 122 + 162 = 400
=> AC = \(\sqrt{400}\) = 20 (cm) (vì AC > 0)
Xét tam giác ABH vuông tại H có:
AB2 = AH2 + BH2 (định lí Pytago)
132 = 122 + BH2
=> BH2 = 132 - 122 = 25
=> BH = \(\sqrt{25}\) = 5 (cm)
Ta có: BC = BH + CH
= 5 + 16 = 21 (cm)
=> CABC = AB + BC + AC = 21 + 13 + 20 = 54 (cm)
Vậy CABC = 54cm.
Trả lời :
Bạn vào câu hỏi tương tự hoặc lên mạng kham khải bài nhá.
# chúc bạn học tốt ạ #
tam giác AHB vuông tại H có: BH2=AB2-AH2=132-122=25( ĐL Pytago) => BH=5 cm
BC=BH+HC=5+16=21 cm
Tam giác AHC vuông tại H có: AH2+ HC2=AC2( đl Pytago) --> AC2=122+ 162=20 cm
Tam giác AHB vuông tại H có: AB2= AH2+BH2( đli Pytago) => BH2=AB2-AH2=132- 122=25 -> BH=5 cm
BC= BH+HC=5+16=21 cm
Tam giác AHC vuông tại H có: AC2= AH2+HC2( đli Pytago) => AC2= 122+ 162=400 --> AC= 20 cm
Cho tam giác nhọn ABC. Kẻ AH vuông góc với BC (H thuộc BC). Biết AB=13cm,AH=12cm,HC=16cm. Tính AC,BC
Xét tam giác AHC có góc AHC=90
=>Tam giác AHC vuông tai H
Áp dụng định lí Py ta go cho tam giác AHC , ta có
AH^2+HC^2=AC^2
=>12^2+16^2=AC^2
=>400=AC^2
=>AC=20(cm)
Áp dụng định lí Py ta go cho tam giác AHB , ta có
AH^2+HB^2=AB^2
=>12^2+HB^2=13^2
=>HB^2=25
=>HB=5(cm)
Ta có BH+HC=BC
=>5+16=BC
=>BC=21 (cm)
Vậy AC=20cm ; BC=21cm
A C B H
Áp dụng định lý Pytago ta có:
\(AC^2=AH^2+HC^2=12^2+16^2=400\)
\(\Rightarrow AC=20\left(cm\right)\)
Và \(BH^2=AB^2-AH^2=13^2-12^2=25\)
\(\Rightarrow BH=5\left(cm\right)\Rightarrow BC=BH+HC=5+16=21\left(cm\right)\)
Vậy \(\hept{\begin{cases}AC=20\left(cm\right)\\BC=21\left(cm\right)\end{cases}}\)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
hay AC=20(cm)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow HB^2=AB^2-AH^2=13^2-12^2=25\)
hay HB=5(cm)
Ta có: HB+HC=BC(H nằm giữa B và C)
nên BC=5+16=21(cm)
Vậy: AC=20cm; BC=21cm
AH \(\perp\) BC ( gt )
\(\Rightarrow\) Tam giác HAC vuông tại H
\(\Rightarrow\) \(^{AC^2}\) = \(^{AH^2}\) + \(^{HC^2}\)
\(\Rightarrow\) \(^{AC^2}\)= \(^{12^2}\) + \(^{16^2}\)
\(\Rightarrow\) \(^{AC^2}\)= 144 + 256
\(\Rightarrow\) \(^{AC^2}\)= 400
\(\Rightarrow\) AC = 20 ( cm )
AH \(\perp\) BC ( gt )
\(\Rightarrow\) Tam giác HAB vuông tại H
\(\Rightarrow\) \(AB^2\) = \(AH^2\) + \(BH^2\)
\(\Rightarrow\) \(BH^2\) = \(AB^2\) - \(AH^2\)
\(\Rightarrow\) \(BH^2\) = \(13^2\) - \(12^2\)
\(\Rightarrow\) \(BH^2\) = 169 - 144
\(\Rightarrow\) \(BH^2\) = 25
\(\Rightarrow\) BH = 5 ( cm )
Có: BH + HC = BC ( Vì H nằm giữa B và C )
\(\Rightarrow\) 5 + 16 = 21 ( cm )
Vậy AC = 20 cm
BC = 21 cm
Học tốt
Lời giải:
Áp dụng định lý Pitago cho tam giác vuông $ABH$:
$BH=\sqrt{AB^2-AH^2}=\sqrt{13^2-12^2}=5$ (cm)
$\Rightarrow BC=BH+CH=5+16=21$ (cm)
Áp dụng định lý Pitago cho tam giác vuông $ACH$:
$AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20$ (cm)
Chu vi $ABC$: $AB+BC+AC=13+21+20=54$ (cm)