Cho ΔABC vuông tại A. Biết AB =6 cm ; AC =8cm
a) Tính BC
b) Trên tia BA lấy điểm D sao cho BD = BC. Từ D kẻ
DH \(\perp\)BC tại H, DH cắt AC tại E. Chứng minh:Δ BAC=Δ BHD
c) Chứng minh: BE là phân giác ABC .
d) Chứng minh: BE vuông góc DC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC vuông tại A có \(\cos B=\dfrac{AB}{BC}\)
=>6/BC=1/2
=>BC=12(cm)
=>\(AC=6\sqrt{3}\left(cm\right)\)
Xét ΔABC có CD là đường phân giác
nên AD/AC=DB/BC
\(\Leftrightarrow\dfrac{AD}{6\sqrt{3}}=\dfrac{DB}{12}\)
mà AD+DB=6
nên Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{AD}{6\sqrt{3}}=\dfrac{DB}{12}=\dfrac{AD+DB}{6\sqrt{3}+12}=\dfrac{6}{12+6\sqrt{3}}=2-\sqrt{3}\)
Do đó: \(AD=12\sqrt{3}-18\left(cm\right);DB=24-12\sqrt{3}\left(cm\right)\)
a, Xét Δ AHC vuông tại H, có :
\(AB^2=AH^2+HB^2\)
=> \(AB^2=12^2+9^2\)
=> \(AB^2=225\)
=> AB = 15 (cm)
Xét Δ AHC vuông tại H, có :
\(AC^2=AH^2+HC^2\)
=> \(AC^2=12^2+16^2\)
=> \(AC^2=400\)
=> AC = 20 (cm)
Xét Δ ABC, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go đảo)
=> Δ ABC vuông tại A
a. Pytago: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
AD là trung tuyến ứng cạnh huyền BC nên \(AD=\dfrac{1}{2}BC=2,5\left(cm\right)\)
b. Vì \(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\) nên AMDN là hcn
Vậy AD=MN
c. ABC vuông cân A thì AD là trung tuyến cũng là p/g
Do đó AMDN là hình thoi(1)
Lại có D là trung điểm BC,DM//AC(⊥AB) nên M là trung điểm AB
Cmtt ta được N là trung điểm AC
Mà AB=AC nên AM=AC
Kết hợp (1) ta được AMDN là hình vuông
a) Có: △ABC cân tại A => AB=AC
và AI là tia p/g của góc ABC => góc BAI= góc CAI
Xét △ABI và △ ACI có
AI chung
góc BAI= góc CAI
AB=AC
=>△ABI = △ ACI (c.g.c)
b)Có : △ABC cân tại A ; AI là tia p/g của góc ABC
=> AI cũng là đường trung tuyến của △ABC
có :D là trung điểm của AC
=> BD là đường trung tuyến của △ ABC
trong △ABC có
AI là đường trung tuyến thứ nhất
BD là đường trung tuyến thứ hai
Mà 2 đường này cắt nhau tại M
=> M là trọng tâm của △ABC
BI=CI=BC/2=3(cm)
Có : △ABC cân tại A ; AI là tia p/g của góc ABC
=> AI cũng là đường cao
=> AI⊥BC
=> △ABI vuông tại I
=> AI^2+ BI^2= AB^2
=> AI^2+9=25
AI^2 = 16
=> AI = 4( cm)
Bài 3:
\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)
BC=13cm
=>\(AC=3\sqrt{13}\left(cm\right)\)
Áp dụng định lý pitago ta có
\(AC^2=AB^2+BC^2\)
\(AB^2=AC^2-BC^2\)
\(AB=\sqrt{12^2-8^2}=\sqrt{80}=4\sqrt{5}cm\)
xét tam giác ABC vuông tại B ta có :
AB^2 + BC^2 = AC^2 ( Theo định lí Py-ta-go )
thay BC = 8 ta được :
AC=12
AB^2 = AC^2-BC^2
=> AB^2 = 144 - 64
=>AB^2 =80
=>AB=\(\sqrt{80}cm=4\sqrt{5}cm\)
a, \(BC=BH+HC=5\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{CH\cdot BC}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b, Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=2\left(cm\right)\)
a: BC=4+1=5(cm)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{5}\left(cm\right)\\AC=\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b: \(AH=\sqrt{HB\cdot HC}=2\left(cm\right)\)
Bài 1:
a: Xét ΔBAC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔBAC vuông tại A có
\(AB=BC\cdot\sin60^0\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
a: BC=10cm
b: Xét ΔBAC vuông tại A và ΔBHD vuông tại H có
BC=BD
góc B chung
Do đó:ΔBAC=ΔBHD
c: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
Do đó: ΔBAE=ΔBHE
Suy ra: \(\widehat{ABE}=\widehat{HBE}\)
hay BE là tia phân giác của góc ABC