Cho tam giác ABC vuông tại A , trung tuyến AM . Trên tia đối của tia MA , lấy điểm D sao cho MD=MA .Cho AB=5cm; AC=12cm . Tính AM và diện tích tam giác ABC.Chứng minh tứ giác ABDC là hình chữ nhật.Gọi H là điểm đối xứng với M qua AB, K là điểm đối xứng với M qua AC . Chứng minh H đối xứng với K qua A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà AD=BC
nên ABDC là hình chữ nhật
a. Xét ΔAMC và ΔBMD, ta có:
BM = MC (gt)
∠(AMB) = ∠(BMC) (đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ ∠(MAC) = ∠D (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
Vậy (ABD) = 90o.
b. Xét ΔABC và ΔBAD ta có:
AB cạnh chung
∠(BAC) = ∠(ABD) = 90o
AC = BD (vì ΔAMC = ΔDMB)
Suy ra: ΔABC = ΔBAD (c.g.c)
c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)
Mặt khác: AM = 1/2 AD
Vậy AM = 1/2 BC.
a/
Xét tg AMB và tg MNC có
MB=MC (giả thiết)
MA=MN (giả thiết)
\(\widehat{AMB}=\widehat{NMC}\) (góc đối đỉnh)
=> tg AMB = tg NMC (c.g.c)
b/ Nối A với I cắt BD tại M'
Xét tg ADE có
BE=BA (gt) => DE là trung tuyến của tg ADE
IE=ID (gt) => AI là trung tuyến của tg ADE
=> M' là trọng tâm của tg ADE => \(BM'=\dfrac{1}{3}BD\) (1)
Ta có
MB=MC (gt); MC=CD (gt) => MB=MC=CD
BD=MB+MC+CD
=> \(BM=\dfrac{1}{3}BD\) (2)
Từ (1) và (2) => \(M'\equiv M\)
=> A; M; I thẳng hàng
Xét ΔABC và ΔBAD ta có:
AB cạnh chung
∠(BAC) = ∠(ABD) = 90o
AC = BD (vì ΔAMC = ΔDMB)
Suy ra: ΔABC = ΔBAD (c.g.c)
Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)
Mặt khác: AM = 1/2 AD
Vậy AM = 1/2 BC.
Xét ΔAMC và ΔDMB, ta có:
CM = BM (gt)
∠(AMC) = ∠(BMD) (đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ ∠(MAC) = ∠D (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
Vậy ∠(ABD) = 90o.
a: Xét ΔMAC và ΔMDB có
MA=MD
góc AMC=góc DMB
MC=MB
=>ΔMAC=ΔMDB
b: ΔMAC=ΔMDB
=>góc MAC=góc MDB
=>AC//DB
=>DB vuông góc AB
ΔABC vuông tại A
mà AM là trung tuyến
nên AM=1/2BC
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà AD=BC
nên ABDC là hình chữ nhật