tính A,biết;A=1/1.300+1/2.301+1/3.302+...+1/101.400 làm nhanh nhé đng vội
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: sin a=2/3
=>cos^2a=1-(2/3)^2=5/9
=>\(cosa=\dfrac{\sqrt{5}}{3}\)
\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)
\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)
b: cos a=1/5
=>sin^2a=1-(1/5)^2=24/25
=>\(sina=\dfrac{2\sqrt{6}}{5}\)
\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)
\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)
c: cot a=1/tana=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>1/cos^2a=1+4=5
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)
a, Chiều cao là : \(S=\dfrac{1}{2}.h.a\\ =>h=2814:\dfrac{1}{2}:402=14\left(cm\right)\)
b, Cạnh đáy là : \(=\dfrac{2S}{h}=\dfrac{2.\dfrac{7}{10}}{\dfrac{1}{2}}=\dfrac{14}{5}\)
c, Diện tích tam giác : \(S=\dfrac{1}{2}\times30,5\times12=183\left(cm^2\right)\)
Diện tích tam giác : \(S=\dfrac{1}{2}\times16\times5,3=42,4\left(dm^2\right)\)
a. chiều cao : \(2814\times2:402\text{=}12\left(cm\right)\)
b. cạnh đáy : \(\dfrac{7}{10}\times2:\dfrac{1}{2}\text{=}2,8\)
c. diện tích đầu : \(S_1\text{=}30,5\times12:2\text{=}183\left(cm^2\right)\)
sau : \(S_2\text{=}16\times5,3:2\text{=}42,4\left(dm^2\right)\)
a) Ta có: a-b=6 => a=b+6
=>a.b = (b+6).b = 16
<=>b2+6b=16
<=>b2+6b-16=0
<=>(b-2).(b+8)=0
<=>\(\left[\begin{array}{nghiempt}b=2\\b=-8\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}a=8\\a=-2\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}a+b=10\\a+b=-10\end{array}\right.\)
Bạn xem lại đề bài phần b nhé.
a) Ta có : \(\left(a-b\right)^2=a^2-2ab+b^2=36\Rightarrow a^2+b^2=36+2ab=36+2.16=68\)
Lại có : \(\left(a+b\right)^2=a^2+2ab+b^2=68+2.16=100\Rightarrow a+b=\pm10\)
b) tương tự
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
con lau moi tra loi nha ban