Tìm các số a, b, c biết:
2a=3b; 5b=7c và 3a+5c=7b+30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2a=78-3a-6b=3(26-a-2b)\vdots 3$
$\Rightarrow a\vdots 3$. Mà $a$ nguyên tố nên $a=3$
Khi đó:
$2.3+3b+6c=78$
$3b+6c=72$
$b+2c=72:3=24$
$\Rightarrow b=24-2c\vdots 2$. Mà $b$ nguyên tố nên $b=2$
Suy ra:
$2+2c=24$
$2c=24-2=22$
$c=22:2=11$ (tm)
Vậy $(a,b,c)=(3,2,11)$
Ta có: 2a và 6c là các số chẵn, kết quả 78 là số chẵn
Suy ra 3b phải là số chẵn => b là số chẵn, mà b là số nguyên tố
Suy ra b=2 (2 là số nguyên tố chẵn duy nhất)
Vậy ta có: 2a+6+6c = 78
Suy ra 2a+ 6c= 72
Suy ra a+ 3c = 36( Chia cả 2 vế cho 2)
Ta có 3c chia hết cho 3, kết quả 36 cũng chia hết cho 3
Suy ra a phải chia hết cho 3. Mà a là số nguyên tố
Suy ra a=3 (số nguyên tố duy nhất chia hết cho 3).
Suy ra 3+3c = 36 => c=11 (chấp nhận vì 11 là số nguyên tố).
Suy ra a=3, b=2, c=11.
ta có 3a+5c=7b+30 => 3a+ 5c-7b=30
\(\text{2a=3b}\Rightarrow\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)
\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)
\(\frac{3a}{63}=2\)
3a=126
a=42
\(\frac{7b}{98}=2\)
7b=196
b=28
\(\frac{5c}{50}=2\)
5c=100
c=20
đáp số a=42; b=28; c=20.