K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 2

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

AH
Akai Haruma
Giáo viên
3 tháng 2

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

9 tháng 2 2019

Ta có y = x 2 + 2 x + a - 4 = x + 1 2 + a - 5  

Đặt u = x + 1 2  khi đó ∀ x ∈ - 2 ; 1  thì u ∈ 0 ; 4  

Ta được hàm số f u = u + a - 5  

Khi đó

M a x x ∈ - 2 ; 1 y = M a x x ∈ 0 ; 4 f u = M a x f 0 , f 4 = M a x a - 5 ; a - 1  

Trường hợp 1:

  a - 5 ≤ a - 1 ⇔ a ≤ 3 ⇒ M a x x ∈ 0 ; 4 f u = 5 - a ≥ 2 ⇔ a = 3

Trường hợp 2:

  a - 5 ≤ a - 1 ⇔ a ≥ 3 ⇒ M a x x ∈ 0 ; 4 f u = a - 1 ≥ 2 ⇔ a = 3

Vậy giá trị nhỏ nhất của M a x x ∈ - 2 ; 1 y = 2 ⇔ a = 3

Đáp án A

4 tháng 3 2018

Trên đoạn [-1; 1], ta có :

y = log 5 x

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, trên đoạn [0;1] hàm số đồng biến, trên đoạn [-1;0] hàm số nghịch biến. Suy ra các giá trị lớn nhất và giá trị nhỏ nhất sẽ đạt được tại các đầu mút.

Ta có: y(−1) = 2 - - 1  =  2 1  = 2, y(0) =  2 0  = 1, y(1) =  2 1  = 2

Vậy max y = y(1) = y(−1) = 2, min y = y(0) = 1.

16 tháng 9 2019

Trên đoạn [-1; 1], ta có :

y = log 5 x

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, trên đoạn [0;1] hàm số đồng biến, trên đoạn [-1;0] hàm số nghịch biến. Suy ra các giá trị lớn nhất và giá trị nhỏ nhất sẽ đạt được tại các đầu mút.

Ta có: y(−1) = 2 - ( - 1 )  = 2 1  = 2, y(0) = 2 0  = 1, y(1) = 2 1  = 2

Vậy max y = y(1) = y(−1) = 2, min y = y(0) = 1.

15 tháng 9 2018

y = x 2 + 2 x + m - 4 = ( x + 1 ) 2 + m - 5

Ta có  ( x + 1 ) 2 + m - 5 ∈ m - 5 ; m - 1

Giá trị lớn nhất của hàm số   y = x 2 + 2 x + m - 4 trên đoạn[ -2; 1] đạt giá trị nhỏ nhất khi

  m - 5 < 0 m - 1 > 0 5 - m = m - 1 ⇔ m = 3

Chọn B.

16 tháng 7 2018

f(x) = | x 2 − 3x + 2| trên đoạn [-10; 10]

Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) =  x 2  – 3x + 2.

Ta có:

g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có đồ thị f(x) như sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132

30 tháng 4 2018

Đáp án D.

Sử dụng máy tính cầm tay chức năng TABLE với thiết lập Start ‒5; End 5; Step 1 thì ta có

Từ bảng giá trị ta kết luận được giá trị lớn nhất của hàm số đạt được là 400 khi x = − 5 .

Từ bảng giá trị trên ta chưa thể kết luận được giá trị nhỏ nhất của hàm số.

Ta thấy  x 3 + 3 x 2 − 72 x + 90 ≥ 0, ∀ x ∈ ℝ   .

Dấu bằng xảy ra khi x 3 + 3 x 2 − 72 x + 90 = 0 .

Trong ba nghiệm trên ta thấy nghiệm  x 3 ∈ − 5 ; 5   . Từ đây ta có thể kết luận giá trị nhỏ nhất của hàm số đạt được là 0 khi x = x 3 .

 

Vậy tổng cần tìm là 400. Ta chọn D.

 

10 tháng 4 2019

f(x) = 2sinx + sin2x trên đoạn [0; 3 π /2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3 3 /2

21 tháng 2 2017