K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

Đáp án đúng : D

8 tháng 2 2021

a, ĐKXĐ để hàm được xác định : \(3-m\ne0\)

\(\Leftrightarrow m\ne3\)

b, - Với x < 0 để hàm số đồng biến thì : \(3-m< 0\)

\(\Leftrightarrow m>3\)

Vậy ...

c, - Để y = 0 là giá trị nhỏ nhất của hàm số tại x = 0 

\(\Leftrightarrow a>0\)

\(\Leftrightarrow3-m>0\)

\(\Leftrightarrow m< 3\)

Vậy ...

 

a) Để hàm số \(y=\left(3-m\right)x^2\) được xác định thì \(3-m\ne0\)

hay \(m\ne3\)

b) Để hàm số \(y=\left(3-m\right)x^2\) đồng biến với mọi x<0 thì \(3-m< 0\)

\(\Leftrightarrow m>3\)

c) Để y=0 là giá trị nhỏ nhất của hàm số tại x=0 thì 3-m>0

hay m<3

13 tháng 8 2017

Đáp án B

14 tháng 11 2017

+ Đạo hàm f'(x) =  2 - m x 2 ( x + 1 ) x ( x + 1 )

f'(x) = 0  ⇒ x   =   2 m     ↔   x   =   m 2 4   ∈ [   0 ; 4 ] ,  ∀ m > 1

+ Lập bảng biến thiên, ta kết luận được  

m a x [ 0 ; 4 ]   f ( x )   =   f ( 4 m 2 )   =   m 2   + 4

+ Vậy ta cần có  m 2 + 4   <   3  

↔   m < 5   →   m > 1     m   ∈ ( 1 ; 5 )

Chọn C.

10 tháng 4 2019

Đạo hàm f'(x) =  m 2 - m + 1 ( x + 1 ) 2 > 0,  ∀ x   ∈   [ 0 ; 1 ]  

Suy ra hàm số f(x)  đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m

Theo bài ta có:

-m2+ m= -2 nên m= -1 hoặc m= 2.

Chọn D.

3 tháng 6 2019

Đáp án C

28 tháng 11 2018

Đáp án C.

Phương pháp: Sử dung BĐT Cauchy.

Cách giải: 

30 tháng 9 2019

Đáp án D

13 tháng 1 2018