K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

Đề không nói tiệm cận đứng/ ngang/ xiên à bạn?

NV
6 tháng 9 2021

Bậc tử bằng bậc mẫu nên ĐTHS không có tiệm cận xiên

\(\lim\limits_{x\rightarrow\infty}\dfrac{x^3+m}{x^3+mx}=\lim\limits_{x\rightarrow\infty}\dfrac{1+\dfrac{m}{x^3}}{1+\dfrac{m}{x^2}}=1\)

\(\Rightarrow y=1\) là tiệm cận ngang

ĐTHS có 4 tiệm cận khi nó có 3 TCĐ 

\(x^3+m=0\Rightarrow x=-\sqrt[3]{m}\)

\(x^3+mx=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2=-m\end{matrix}\right.\)

\(\Rightarrow\)Hàm có 3 TCĐ khi \(m>0\)

 

30 tháng 9 2019

Hàm số bậc nhất đồng biến suy ra a > 0 hay m > 2

m thuộc đoạn [-2018; 2018] suy ra m thuộc {3; 4; ...; 2018}

Vậy có 2016 giá trị nguyên của m cần tìm.

Chọn D.

6 tháng 2 2019

Chọn B

Phương pháp: Sử dụng đạo hàm của hàm hợp để tính đạo hàm.

4 tháng 9 2017

14 tháng 3 2018

1 tháng 10 2018

7 tháng 9 2019

Đáp án A.

Ta có y ' = − 3 x 2 − 6 x + 4 m =>Hàm số nghịch biến trên  − ∞ ; 0

⇔ y ' ≤ 0 ∀ x ∈ − ∞ ; 0 ⇔ 4 m ≤ 3 x 2 + 6 x ∀ x ∈ − ∞ ; 0

Bảng biến thiên:

  ⇒ 3 x 2 + 6 x ≥ − 3 ∀ x ∈ − ∞ ; 0 ⇒ 4 m ≤ 3 x 2 + 6 x ∀ x ∈ − ∞ ; 0

⇔ 4 m ≤ − 3 ⇔ m ≤ − 3 4 ⇒ m ∈ − 2018 ; − 3 4 m ∈ ℤ

 

6 tháng 11 2017

Đáp án D

Cách giải:

=> Hàm số đồng biến trên 

 Phương trình (1) có 2 nghiệm phân biệt 

Theo đinh lí Viet ta có

Khi đó, để hàm số đồng biến trên khoảng (1;+∞) thì

 ( vô lí )

Vậy m ≥ 13

Mà 

Số giá trị của m thỏa mãn là: 2018 - 13 + 1 = 2006

22 tháng 6 2019



28 tháng 9 2017