Cho ba số a,b,c tỉ lệ với các số 10;11;12. Tính giá trị biểu thức
P = a + 6b – 8c/ a + 3b – 4c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\begin{array}{l}\frac{6}{{10}} = \frac{{6:2}}{{10:2}} = \frac{3}{5};\\\frac{9}{{15}} = \frac{{9:3}}{{15:3}} = \frac{3}{5}\end{array}\)
\(\begin{array}{l}\frac{{6 + 9}}{{10 + 15}} = \frac{{15}}{{25}} = \frac{{15:5}}{{25:5}} = \frac{3}{5};\\\frac{{6 - 9}}{{10 - 15}} = \frac{{ - 3}}{{ - 5}} = \frac{3}{5}\end{array}\)
Ta được: \(\frac{{6 + 9}}{{10 + 15}} = \frac{{6 - 9}}{{10 - 15}} = \frac{6}{{10}} = \frac{9}{{15}}\)
b) - Vì \(k = \frac{a}{b} \Rightarrow a = k.b\)
Vì \(k = \frac{c}{d} \Rightarrow c = k.d\)
- Ta có:
\(\begin{array}{l}\frac{{a + c}}{{b + d}} = \frac{{k.b + k.d}}{{b + d}} = \frac{{k.(b + d)}}{{b + d}} = k;\\\frac{{a - c}}{{b - d}} = \frac{{k.b - k.d}}{{b - d}} = \frac{{k.(b - d)}}{{b - d}} = k\end{array}\)
- Như vậy, \(\frac{{a + c}}{{b + d}}\) =\(\frac{{a - c}}{{b - d}}\) = \(\frac{a}{b}\) =\(\frac{c}{d}\)( = k)
a: \(\dfrac{6+9}{10+15}=\dfrac{15}{25}=\dfrac{3}{5};\dfrac{6-9}{10-15}=\dfrac{-3}{-5}=\dfrac{3}{5}\)
=>Bằng nhau
b: a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k;\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)
=>\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a}{b}=\dfrac{c}{d}\)
Theo đề bài các số a, b, c tỉ lệ với các số 2, 4, 6
\( \Rightarrow \) a : b : c = 2 : 4 : 6
\( \Rightarrow \) \(\dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{6}\) ( Áp dụng lí thuyết về dãy tỉ số bằng nhau )
Gọi số điểm 10 của 3 bạn a,b,c lần lượt là x,y,z.
Vì số điểm 10 của 3 bạn tỉ lệ với 2,3,4 và tổng số điểm 10 của a và c hơn b 6 điểm nên ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và (x+y)-z=6
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{\left(x+y\right)-z}{\left(2+3\right)-4}=\frac{6}{1}=6\)
=> x=2.6=12 (điểm)
y=3.6=18 (điểm)
z=4.6=24 (điểm)
=> Tổng số điểm 10 của 3 bạn a,b,c là: 12 + 18 + 24= 54 (điểm 10)
Vậy.....
Giải:
Ta có: \(\frac{a}{10}=\frac{b}{11}=\frac{c}{12}\)
Đặt \(\frac{a}{10}=\frac{b}{11}=\frac{c}{12}=k\Rightarrow a=10k,b=11k,c=12k\)
\(P=\frac{a+6b-8c}{a+3b-4c}=\frac{10k+6.11.k-8.12.k}{10k+3.11.k-4.12.k}=\frac{10k+66k-96k}{10k+33k-48k}=\frac{\left(10+66-96\right)k}{\left(10+33-48\right)k}=\frac{-20}{-5}=4\)
Vậy P = 4
4