K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Theo đề bài các số a, b, c tỉ lệ với các số 2, 4, 6

\( \Rightarrow \) a : b : c = 2 : 4 : 6

\( \Rightarrow \) \(\dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{6}\) ( Áp dụng lí thuyết về dãy tỉ số bằng nhau )

28 tháng 11 2017

1 – c;     2 – a;   3 – c;    4 – b .

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Tỉ số giữa số quyển vở và số điểm 10 của bạn Mai là : \(\dfrac{m}{{12}}\)

Tỉ số giữa số quyển vở và số điểm 10 của bạn Ngọc là : \(\dfrac{n}{{13}}\)

Tỉ số giữa số quyển vở và số điểm 10 của bạn Phú là : \(\dfrac{p}{{14}}\)

Tỉ số giữa số quyển vở và số điểm 10 của bạn Quang là : \(\dfrac{q}{{15}}\)

Từ các tỉ số trên ta lập được dãy tỉ số bằng nhau : \(\dfrac{m}{{12}} = \dfrac{n}{{13}} = \dfrac{p}{{14}} = \dfrac{q}{{15}}\)

6 tháng 12 2021

\(a,k=\dfrac{y}{x}=-\dfrac{4}{6}=-\dfrac{2}{3}\\ b,y=-\dfrac{2}{3}x\\ c,y=223\Rightarrow x=-\dfrac{3}{2}y=-\dfrac{3}{2}\cdot223=-\dfrac{669}{2}\)

10 tháng 1 2019

a) Ta có : 7x = 5z => x/5 = z/7 => x/15 = z/21 (1)

               x/3 = y/2 => x/15 = y/10 (2)

Từ (1) và (2) suy ra \(\frac{x}{15}=\frac{y}{10}=\frac{z}{21}\)

Áp dụng t/c của dãy tỉ số bằng nhau

Ta có : \(\frac{x}{15}=\frac{y}{10}=\frac{z}{21}\)=> \(\frac{4x}{60}=\frac{3y}{30}=\frac{2z}{42}=\frac{4x-3y-2z}{60-30-42}=\frac{-2}{-12}=\frac{1}{6}\)

=> \(\hept{\begin{cases}\frac{x}{15}=\frac{1}{6}\\\frac{y}{10}=\frac{1}{6}\\\frac{z}{21}=\frac{1}{6}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{1}{6}.15=\frac{15}{6}\\y=\frac{1}{6}.10=\frac{5}{3}\\z=\frac{1}{6}.21=\frac{7}{2}\end{cases}}\)

Vậy ...

a: x=2y

nên y=2/x

yz=-3

\(\Leftrightarrow z\cdot\dfrac{2}{x}=-3\)

\(\Leftrightarrow2z=-3x\)

 

23 tháng 8 2017

1. Điền hạng tử thích hợp vào chố dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.

a) 16x2 +  * .24xy + x

b) * - 42xy + 49y2

c) 25x+ * + 81

d) 64x2 - * +9

2. Viết mỗi bt sau về dạng tổng hoặc hiệu hai bình phương

a) x2 + 10x + 26 + y+ 2y

b) z2 - 6z + 5 - t2 - 4t

c) x2 - 2xy + 2y2 + 2y + 1

d) ( x + y + 4 )( x + y - 4 )

e) ( x + y - 6 )

23 tháng 8 2017

Bài 1: Đề như đã sửa thì cách giải như sau: 
Trong Tam giác ABC 
Có AM/AB = AN/AC 
Suy ra: MN // BC . 

Trong tam giác ABI 
có 
MK // BI do K thuộc MN 
Do đó : MK/BI =AM/AB (1) 

Tương tự trong tam giác AIC 
Có NK// IC nên NK/IC = AN/AC (2) 

Từ (1) (2) có NK/IC = MK/BI do AN/AC = AM/AB 
Lại có IC = IB ( t/c trung tuyến) 
nên NK = MK (ĐPCM) 

Bài 2: 
Bài này thứ tự câu hỏi hình như ngược mình giải lần lượt các câu b) d) c) a) 
Từ A kẻ đường cao AH ( H thuộc BC). 

b) Do tam giác ABC vuông tại A áp dụng pitago ta có 
BC=căn(AB mũ 2 + AC mũ 2)= 20cm 

d) Có S(ABC)= AB*AC/2= AH*BC/2 
Suy ra: AH= AB*AC/ BC = 12*16/20=9.6 cm 

c) Ap dung định lý cosin trong tam giác ABD và ADC ta lần lượt có đẳng thức: 

BD^2= AB^2 + AD^2 - 2*AB*AD* cos (45) 
DC^2= AC^2+ AD^2 - 2*AC*AD*cos(45) (2) 

Trừ vế với vế có: 
BD^2-DC^2=AB^2-AC^2- 2*AB*AD* cos (45)+2*AC*AD*cos(45) 
(BC-DC)^2-DC^2 = -112+4*Căn (2)* AD. 
400-40*DC= -112+................ 
Suy 128- 10*DC= Căn(2) * AD (3) 

Thay (3) v ào (2): rính được DC = 80/7 cm; 

BD= BC - DC= 60/7 cm; 


a) Ta có S(ABD)=AH*BD/2 
S(ADC)=AH*DC/2 
Suy ra: S(ABD)/S(ACD)= BD/DC = 60/80=3/4;

20 tháng 11 2017

Gọi các cạnh của tam giác lần lượt là a, b, c

Theo đề bài ta có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và a+b+c=45(cm)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{â+b+c}{2+3+4}=\dfrac{45}{9}=5\)

=> a= 5.2= 10

=> b= 5.3= 15

=> c= 5.4=20

Vậy các cạnh của tam giác lần lượt là 10cm, 15cm, 20cm

19 tháng 5 2019

Gọi các cạnh của tam giác lần lượt là a, b, c

Theo đề bài ta có:

a2=b3=c4a2=b3=c4 và a+b+c=45(cm)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

a2=b3=c4=â+b+c2+3+4=459=5a2=b3=c4=â+b+c2+3+4=459=5

=> a= 5.2= 10

=> b= 5.3= 15

=> c= 5.4=20

Vậy các cạnh của tam giác lần lượt là 10cm, 15cm, 20cm