Khẳng định nào sau đây là sai?
A. Hàm số y=cosx
có tập xác định là R
B. Hàm số y=cosx
có tập giá trị là [-1;1]
C. Hàm số y=cosx
là hàm số lẻ
D. Hàm số y=cosx tuần hoàn với chu kỳ 2π
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`C.x=2=>y=(2.2-3)/(2-1)=1=>Đ`
`D.x=1=>y=1^3-3=-2=>Đ`
`A.TXĐ:RR=>Đ`
`=>B.` sai
Ta có: \(y = \cos x\)
\(y\left( { - x} \right) = \cos \left( { - x} \right) = \cos x = y\)
Suy ra hàm số \(y = \cos x\) là hàm số chẵn
Vậy ta chọn đáp án C
Đáp án là B
• Hàm số y = sin x ; y = cos x có tập xác định D = ℝ .
• Hàm số y = tan x & y = cot x có tập xác định lần lượt D = ℝ \ π 2 + k π ; D = ℝ \ k π .
Đồ thị này cắt trục Ox tại rất nhiều điểm chứ không phải chỉ có 1 điểm
=>Chọn C
a.
\(\Leftrightarrow m-cosx\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\ge max\left(cosx\right)\)
\(\Leftrightarrow m\ge1\)
b.
\(\Leftrightarrow2sinx-m\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\le2sinx\) ; \(\forall x\)
\(\Leftrightarrow m\le\min\limits_{x\in R}\left(2sinx\right)\)
\(\Leftrightarrow m\le-2\)
c.
\(\Leftrightarrow cosx+m\ne0\) ; \(\forall x\)
\(\Leftrightarrow\left[{}\begin{matrix}m>\max\limits_R\left(cosx\right)\\m< \min\limits_R\left(cosx\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
Đáp án D
Tại -1 hàm số không xác định nên không nghịch biến trên ( - ∞ ; 3 )
Đáp án đúng là D
Giải thích
Hàm số xác định ⇔ sin x − cos x ≠ 0
⇔ sin x ≠ cos x
⇔ cos x ≠ cos π 2 − x
⇔ x ≠ π 2 − x + k 2 π x ≠ − π 2 + x + k 2 π
⇔ x ≠ π 4 + k π
Ta có tập xác định của hàm số \(y=cosx\) là \(\mathbb{R}.\)
Nếu với \(x\in\mathbb{R}\) thì \(-x\in\mathbb{R}\) và\(y\left(-x\right)=cos\left(-x\right)=cosx=y\left(x\right).\)
Vậy hàm số \(y=cosx\) là hàm số chẵn.
\(\Rightarrow B\)
Chọn C