1)Cho hàm số y = ax
-Hãy xác định hệ số a biết đồ thị của hàm số đã cho đi qua điểm A (-2;1) -Vẽ đồ thị của hàm số đã cho với a vừa tìm được 2) Hàm số y = f(x) được cho bởi công thức f(x) = 3x² + 5. Chứng minh rằng bới mọi giá trị của x thì hàm số đã cho luôn nhận giá trị dương.Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay \(A\left(-2;1\right)\) và hàm số ta có : \(1=a.\left(-2\right)\Leftrightarrow1=-2a\Leftrightarrow a=\dfrac{-1}{2}\)
vậy \(a=\dfrac{-1}{2}\)
bài này mk nghỉ phải vẽ đường thẳng (d) mới đúng chứ
Hàm số y = ax + 3 là hàm số bậc nhất nên a ≠ 0
a) Đồ thị của hàm số đi qua điểm A(2; 6) nên:
b) Vẽ đồ thị:
- Cho x = 0 thì y = 3 ta được B(0; 3).
Nối A, B ta được đồ thị hàm số
dễ mà tự giải đi bạn ưi tui ko bít cách giải đâu nên đừn hỏi
Hàm số y = ax + 3 là hàm số bậc nhất nên a ≠ 0
Đồ thị của hàm số đi qua điểm A(2; 6) nên:
Vẽ đồ thị giùm nha! Giúp câu chứng minh thôi. Ở đây vẽ đồ thị xấu lém =,=
Ta có: \(y=f\left(x\right)=3x^2+5\)
Ta có: \(x^2\ge0\forall x\) (luôn đúng)
Nên \(3x^2\ge0\). do đó \(y=f\left(x\right)=3x^2+5\ge5\forall x\)
Vậy hàm số \(y=f\left(x\right)=3x^2+5\) luôn dương với mọi x. (đpcm)
Bài 2:
\(3x^2+5\ge5>0\forall x\)
nên f(x)>0 với mọi x