K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017

Đáp án: C

Vì parabol có tiêu điểm F(2;0) nên p/2 = 2 ⇒ p = 4

Vậy phương trình parabol là: (P):  y 2  = 8x

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Do parabol có tiêu điểm  là \(F\left( {6;0} \right)\) nên ta có \(\frac{p}{2} = 6 \Leftrightarrow p = 12\)

Vậy phương trình chính tắc của parabol là: \({y^2} = 24x\)

1 tháng 5 2023

Ta có: F(5;0) nên \(\dfrac{p}{2}\)=5 ➝p=10

Vậy phương trình chính tắc của parabol (P): \(y^2\)= 2.10.x hay (P):\(y^2\)=20x

1 tháng 5 2023

F(5;0) --> p/2 = 5 --> p = 10 --> (P): y^2 = 20x.

7 tháng 6 2018

Đáp án: B

Ta có: d(F;Δ) = p = 2 ⇒ (P): y 2  = 4x

13 tháng 9 2019

Đáp án: B.

Ta có khoảng cách từ tiêu điểm đến đường chuẩn của một parabol bằng p ⇒ p = 2

Vậy phương trình chính tắc của parabol là:  y 2  = 2.2x ⇔  y 2  = 4x

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Ta có \(2a = 20 \Rightarrow a = 10,2b = 16 \Rightarrow b = 8\).

Vậy phương trình chính tắc của elip có dạng \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\)

b) Ta có \(2a = 12 \Rightarrow a = 6,2c = 20 \Rightarrow c = 10\), suy ra \(b = \sqrt {{c^2} - {a^2}}  = \sqrt {{{10}^2} - {6^2}}  = 8\)

Vậy phương trình chính tắc của hypebol có dạng \(\frac{{{x^2}}}{{36}} - \frac{{{y^2}}}{{64}} = 1\)

c) Ta có tiêu điểm \(F\left( {\frac{1}{2};0} \right)\).

Do đó, \(\frac{p}{2} = \frac{1}{2}\) suy ra \(p = 1\).

Vậy phương trình chính tắc của parabol là \({y^2} = 2x\).

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Tiêu điểm có tọa độ \((4;0)\) nên ta có \(p = 8\)

Suy ra phương trình chính tắc của parabol là: \({y^2} = 16x\)

b) Đường chuẩn có phương trình \(x =  - \frac{1}{6}\), nên ta có \(p =  - \frac{1}{3}\)

Suy ra phương trình chính tắc của parabol có dạng \({y^2} =  - \frac{2}{3}x\)

c) Gọi phương trình chính tắc của parabol có dạng \({y^2} = 2px\)

Thay tọa độ điểm \((1;4)\) vào phương trình \({y^2} = 2px\) ta có:

\({4^2} = 2p.1 \Rightarrow p = 8\)

Vậy phương trình chính tắc của parabol là \({y^2} = 16x\)

d) Gọi \(F\left( {\frac{p}{2};0} \right)\), \(\Delta :x + \frac{p}{2} = 0\) lần lượt là tiêu điểm và phương trình đường chuẩn của parabol ta có:

\(d\left( {F,\Delta } \right) = \frac{{\left| {\frac{p}{2} + \frac{p}{2}} \right|}}{1} = 8 \Rightarrow p = 8\)

Vậy phương trình chính tắc của parabol là \({y^2} = 16x\)