K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(1) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(1;-4\right)\), \(\overrightarrow{b}=\left(0;2\right)\). tọa độ của vecto \(\overrightarrow{u}=2\overrightarrow{a}-\overrightarrow{b}\) là?(2) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(-7;3\right)\), \(\overrightarrow{b}=\left(4;1\right)\). tọa độ của vecto \(\overrightarrow{u}=\overrightarrow{b}-2\overrightarrow{a}\) là?(3) trong mặt phẳng tọa độ...
Đọc tiếp

(1) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(1;-4\right)\)\(\overrightarrow{b}=\left(0;2\right)\). tọa độ của vecto \(\overrightarrow{u}=2\overrightarrow{a}-\overrightarrow{b}\) là?

(2) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(-7;3\right)\)\(\overrightarrow{b}=\left(4;1\right)\)tọa độ của vecto \(\overrightarrow{u}=\overrightarrow{b}-2\overrightarrow{a}\) là?

(3) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{u}=\left(-5;4\right)\)\(\overrightarrow{v}=-3\overrightarrow{j}\). tọa độ của vecto \(\overrightarrow{a}=2\overrightarrow{u}-5\overrightarrow{v}\) là?

(4) trong mặt phẳng tọa độ Oxy, cho hai điểm A (1;1), B (4;-7) và \(\overrightarrow{OM}=2\overrightarrow{OA}-5\overrightarrow{OB}\). tổng hoành độ và tung độ của điểm M là?

giúp mk vs ạ mk cần gấp thank

1

(1); vecto u=2*vecto a-vecto b

=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)

(2): vecto u=-2*vecto a+vecto b

=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)

(3): vecto a=2*vecto u-5*vecto v

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)

(4): vecto OM=(x;y)

2 vecto OA-5 vecto OB=(-18;37)

=>x=-18; y=37

=>x+y=19

\(\overrightarrow{a}=\left(2;-1\right)\)

28 tháng 11 2022

\(cos\left(\overrightarrow{a},\overrightarrow{b}\right)=\dfrac{1\cdot\left(-1\right)+\left(-2\right)\cdot\left(-3\right)}{\sqrt{1^2+2^2}\cdot\sqrt{1^2+3^2}}=\dfrac{5}{\sqrt{5}\cdot\sqrt{10}}=\dfrac{5}{\sqrt{50}}=\dfrac{1}{\sqrt{2}}\)

 

Chọn C

NV
3 tháng 10 2019

\(m\overrightarrow{a}=m\left(-1;-2\right)=\left(-m;-2m\right)\)

\(n\overrightarrow{b}=n\left(1;-3\right)=\left(n;-3n\right)\)

\(\Rightarrow m\overrightarrow{a}+n\overrightarrow{b}=\left(-m+n;-2m-3n\right)\)

\(\Rightarrow\left\{{}\begin{matrix}-m+n=2\\-2m-3n=-4\end{matrix}\right.\) \(\Rightarrow m-n=-2\) (đảo dấu pt đầu là ra, ko cần giải hẳn ra m; n)

AH
Akai Haruma
Giáo viên
30 tháng 1 2020

Lời giải:
Gọi \(\overrightarrow{d}=(x,y)\). Theo bài ra ta có:

\(\left\{\begin{matrix} \overrightarrow{a}.\overrightarrow{d}=4\\ \overrightarrow{b}.\overrightarrow{d}=-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -2x+3y=4\\ 4x+y=-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{-5}{7}\\ y=\frac{6}{7}\end{matrix}\right.\)

Vậy.......

11 tháng 12 2021

Dựng \(\overrightarrow{AB}=\overrightarrow{BD}\)

\(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(-3;-2\right)\)

\(\overrightarrow{BD}=\left(x_D-x_B;y_D-y_B\right)=\left(x_D-1;y_D-4\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_D-1=-3\\y_D-4=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=-2\\y_D=2\end{matrix}\right.\)

\(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\cos\left(\overrightarrow{BD};\overrightarrow{BC}\right)=\dfrac{-3\cdot6+\left(-2\right)\cdot\dfrac{-5}{2}}{\sqrt{\left(-3\right)^2+\left(-2\right)^2}\cdot\sqrt{6^2+\left(-\dfrac{5}{2}\right)^2}}\)

\(=\dfrac{\left(-18+5\right)}{\sqrt{13}\cdot\sqrt{\dfrac{13}{2}}}-\sqrt{2}\)

\(\Leftrightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=45^0\)

30 tháng 1 2023

Giả sử `\vec{c}=m\vec{a}+n\vec{b}`

`<=>(3;-4)=m(2;0)+n(0;-3)`

`<=>(3;-4)=(2m;-3n)`

`<=>{(m=3/2),(n=4/3):}`

   `=>\vec{c}=3/2\vec{a}+4/3\vec{b}`