K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2020

Gọi hình bình hành ABCD có A(4; -1)

Nhận thấy: A∉ (d1) x - 3y = 0; A∉ (d2); 2x + 5y + 6 =0

=> d1; d2 là BC và DC

Giả sử: BC: x -3y =0 ; CD: 2x + 5y +6 =0

=> Tọa độ đỉnh C là nghiệm của hệ: \(\left\{{}\begin{matrix}x-3y=0\\2x+5y+6=0\end{matrix}\right.\)

=> C(\(\frac{-18}{11};\frac{-6}{11})\)

Phương trình AD: x + 3y -1 = 0

=> Tọa độ đỉnh D là nghiệm của hệ: \(\left\{{}\begin{matrix}x+3y-1=0\\2x+5y+6=0\end{matrix}\right.\)

=> D(-23 ; 8)

Phương trình AB: 2x + 5y - 3 = 0

=> Tọa độ đỉnh B là nghiệm của hệ: \(\left\{{}\begin{matrix}2x+5y-3=0\\x-3y=0\end{matrix}\right.\)

=> B(\(\frac{9}{11};\frac{3}{11})\)

12 tháng 4 2017

Bạn ơi, tại sao lại biết:

Cạnh DC: x-3y=0

Cạnh BC: 2x+5y=6

20 tháng 12 2021

1, Gọi tọa độ điểm D(x;y)

Ta có:\(\overrightarrow{AB}\left(8;1\right)\)

\(\overrightarrow{DC}\left(1-x;5-y\right)\)

Tứ giác ABCD là hình bình hành khi

\(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow1-x=8;5-y=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)

Vậy tọa độ điểm D(-7;4)

20 tháng 12 2021

câu 2 tương tự như câu 1 nha bạn

31 tháng 3 2016

A(1;0) B (2;0) C D I(x;x) 4

Từ giả thiết  suy ra khoảng cách giữa 2 đường thẳng song song AB, CD bằng 4.

Từ đó, do A, B thuộc Ox nên C(c;4), D(d;4)

Vì 2 đường chéo AC, BD cắt nhau tại I nằm trên đường thẳng y=x nên ta có hệ :

\(\begin{cases}2x=c+1=d+2\\2x=0+4\end{cases}\)

Từ đó tìm được x=2, c=3, d=2.

Vậy C(3;4), D(2;4)

28 tháng 8 2016

cho mình hỏi hình bình hành có diện tích bằng 4 thì sao suy ra được khoảng cách giữa 2 đường thẳng song song =4

30 tháng 8 2017

Đáp án A

Gọi 3 đỉnh theo thứ tự là A, B,C

26 tháng 7 2018

Giải bài 6 trang 27 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 6 trang 27 sgk Hình học 10 | Để học tốt Toán 10

23 tháng 11 2019

Đáp án A

Gọi 3 đỉnh theo thứ tự là A, B,C

A B → = 1 ; 2 ; 3 , A C → = 6 ; 6 ; 4 S h b h = 2 S A B C = A B . A B . sin A = 2 83

NV
27 tháng 2 2023

Thay \(\left(-2;2\right)\) vào 2 pt 2 cạnh đều ko thỏa \(\Rightarrow\) 2 cạnh còn lại đi qua (-2;2)

2 cạnh đã cho ban đầu có vtpt lần lượt là (1;-1) và (1;3), do đó 2 cạnh còn lại cũng lần lượt nhận (1;-1)  cà (1;3) là vtpt (do các cặp cạnh đối của hình bình hành song song)

Phương trình 2 cạnh còn lại là:

\(1\left(x+2\right)-1\left(y-2\right)=0\Leftrightarrow x-y+4=0\)

\(1\left(x+2\right)+3\left(y-2\right)=0\Leftrightarrow x+3y-4=0\)

26 tháng 10 2021

\(a,\Rightarrow C,A,D\) \(thẳng\) \(hàng\Rightarrow\overrightarrow{CA}+\overrightarrow{CD}=\overrightarrow{0}\Leftrightarrow\overrightarrow{CA}=\overrightarrow{DC}\)

\(D\left(x;y\right)\Rightarrow\overrightarrow{CA}=\overrightarrow{DC}\Leftrightarrow\left\{{}\begin{matrix}-1-x=2\\-2-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)\(\Rightarrow D\left(-3;-2\right)\)

\(b,E\left(xo;yo\right)\Rightarrow\overrightarrow{AE}=\overrightarrow{BC}\)\(\Leftrightarrow\left\{{}\begin{matrix}xo-1=-3\\yo+2=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}xo=-2\\yo=-7\end{matrix}\right.\)\(\Rightarrow E\left(-2;-7\right)\)

\(c,\Rightarrow G\left(xG;yG\right)\Rightarrow\left\{{}\begin{matrix}xG=\dfrac{1+2-1}{3}=\dfrac{2}{3}\\yG=\dfrac{-2+3-2}{3}=-\dfrac{1}{3}\end{matrix}\right.\)\(\Rightarrow G\left(\dfrac{2}{3};-\dfrac{1}{3}\right)\)