Cho hàm số y = mx + 3 (d)Xác định m biết (d) đi qua A(1;-1) Vẽ đồ thị với m vừa tìm được.. Xác định m biết đường thẳng (d) song song với đường thẳng y = 2x – 1(d’)Tìm tọa độ giao đểm của (d) và (d’) với m tìm được ở câu a bằng phép tính
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Hệ số góc là 5 nên -2m+1=5
=>-2m=4
=>m=-2
b: (d1)//(d)
=>-2m+1=3 và m+3<>7
=>m=-1
c: Hai đường vuông góc với nhau
=>-1/2(-2m+1)=-1
=>m^2-1/2+1=0
=>m^2+1/2=0(loại)
\(a,\Leftrightarrow3m-1=-2\Leftrightarrow m=-\dfrac{1}{3}\Leftrightarrow\left(d\right):y=-\dfrac{1}{3}x-1\\ c,\text{Hs góc: }-\dfrac{1}{3}\\ \text{Gọi góc cần tìm là }\alpha>90^0\\ \Leftrightarrow\tan\left(180^0-\alpha\right)=\dfrac{1}{3}\approx\tan18^0\\ \Leftrightarrow\alpha\approx180^0-18^0=162^0\)
a) Thay x=1 và y=2 vào (P), ta được:
\(a\cdot1^2=2\)
hay a=2
a: Thay x=1 và y=-1 vào (d), ta được:
m+1=-1
hay m=-2
(P): \(y=2x^2\)
Phương trình hoành độ giao điểm (P) và (d):
\(2x^2=mx-m^2-\dfrac{3}{2}m-\dfrac{3}{4}\)
\(\Leftrightarrow2x^2-mx+m^2+\dfrac{3}{2}m+\dfrac{3}{4}=0\) (1)
\(\Delta=m^2-8\left(m^2+\dfrac{3}{2}m+\dfrac{3}{4}\right)=-7m^2-12m-6=-7\left(m+\dfrac{6}{7}\right)^2-\dfrac{6}{7}< 0\) ; \(\forall m\)
\(\Rightarrow\) (1) vô nghiệm với mọi m hau (d) và (P) ko cắt nhau với mọi m
a. Vì đường thẳng (d) đi qua A(1;-1) \(\Rightarrow1\cdot m+3=-1\Rightarrow m=-4\)
b. \(\left(d\right):y=-4x+3\)
Đồ thị hàm số y=-4x+3 là đường thẳng (d) đi qua 2 điểm C(0;3) và D(\(\dfrac{3}{4}\);0)
( hình bạn tự vẽ nhé)
c. Để (d) song song với (d') ⇔ \(\left\{{}\begin{matrix}m=2\\3\ne-1\end{matrix}\right.\) \(\Leftrightarrow m=2\)
d. Hoành độ giao điểm 2 đường thẳng (d) và (d') là nghiệm của phương trình:
\(-4x+3=2x-1\Leftrightarrow2x+4x=3+1\Leftrightarrow6x=4\Leftrightarrow x=\dfrac{2}{3}\)
⇒ y=\(2\cdot\dfrac{2}{3}-1=\dfrac{4}{3}-1=\dfrac{1}{3}\)