K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2021

Đường thẳng AB nhận \(\overrightarrow{n}=\left(1;2\right)\) làm vecto pháp tuyến

AB đi qua A (1; -1) nên nó có phương trình là

x - 1 + 2 (y + 1) = 0 hay x + 2y + 1 = 0

Gọi M là trung điểm của AB ⇒ M ∈ Δ, tọa độ của M có dạng

M (t ; 2t + 1) với t là số thực và \(\overrightarrow{AM}=\left(t-1;2t+2\right)\)

⇒ AM ⊥ Δ 

⇒ \(\overrightarrow{AM}.\overrightarrow{n}=0\)

⇒ t + 1 + 2. (2t + 2) = 0

⇒ t = -1

Vậy M (- 1; - 1)

M là trung điểm của AB => Tọa độ B

Làm tương tự như thế sẽ suy ra tọa độ C

 

 

NV
15 tháng 2 2022

Do G thuộc y=x nên tọa độ G có dạng: \(G\left(g;g\right)\)

Do C thuộc \(x+y+4=0\) nên tọa độ có dạng: \(C\left(c;-c-4\right)\)

Áp dụng công thức trọng tâm:

\(\left\{{}\begin{matrix}-1+1+c=3.g\\0+2-c-4=3g\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}c-3g=0\\-c-3g=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=-1\\g=-\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow C\left(-1;-3\right)\)

Biết tọa độ 3 đỉnh, dễ dàng viết pt các cạnh

10 tháng 5 2016

2x - 7y - 5 = 0 và 3x + 4y - 22 = 0

10 tháng 5 2016

Hoc24 lại cứ thách đố học sinh hiha

MAX hại não với một học sinh lớp 7.

10 tháng 5 2016

BC : x-4y-1=0, CA : x+2y-7=0 và AB : x-y+2=0

13 tháng 3 2021

Cho tam giác abc có tọa độ A(-2;3) pt đường trung tuyến BM 2x-y+1=0 và CN x+y-4=0 M,N lần lượt là trung điểm AC và AB .TÌM tọa độ B

a: BC: x+y+4=0

=>AH: -x+y+c=0

Thay x=-1 và y=-2 vào AH, ta được:

c+1-2=0

=>c=1

=>-x+y+1=0

=>x-y-1=0

b: BC: x+y+4=0

=>B(x;-x-4)

Tọa độ M là:

xM=(x-1)/2 và yM=(-x-4-2)/2=(-x-6)/2

BC: x+y+4=0

=>MN: x+y+c=0

Thay xM=(x-1)/2 và yM=(-x-6)/2 vào MN, ta được:

\(\dfrac{x-1}{2}+\dfrac{-x-6}{2}+c=0\)

=>c+(1/2x-1/2-1/2x-3)=0

=>c=7/2

=>x+y+7/2=0

8 tháng 4 2016

A B C P(1,2;5,6)

Điểm P có tọa độ \(\left(\frac{5}{6};\frac{28}{5}\right)\). Đặt \(\widehat{ABC}=\alpha\). Do tam giác ABC cân tại A nên \(\alpha\in\left(0;\frac{\pi}{2}\right)\) do đó \(\alpha=\left(\widehat{AB,BC}\right)=\left(\widehat{BC,CA}\right)\)

và \(\cos\alpha=\frac{\left|4.1+\left(-1\right).\left(-2\right)\right|}{\sqrt{4^2+\left(-1\right)^2}.\sqrt{1^2+\left(-2\right)^2}}=\frac{6}{\sqrt{5.17}}\)

Do đó bài toán trở thành viết phương trình đường thẳng đi qua \(P\left(\frac{6}{5};\frac{28}{7}\right)\) không song song với AB, tạo với BC góc \(\alpha\) mà \(\cos\alpha=\frac{6}{\sqrt{5.17}}\) (1)

Đường thẳng AC cần tìm có vecto pháp tuyến \(\overrightarrow{n}=\left(a;b\right)\) với \(a^2+b^2\ne0\) và \(a\ne-4b\) (do AC không cùng phương với AB). Từ đó và (1) suy ra :

\(\frac{6}{\sqrt{5.17}}=\frac{\left|a-2b\right|}{\sqrt{5}.\sqrt{a^2+b^2}}\Leftrightarrow6\sqrt{a^2+b^2}=\sqrt{17}.\left|a-2b\right|\)

                              \(\Leftrightarrow19a^2+68ab-32b^2=0\)

                              \(\Leftrightarrow\left(a+4b\right)\left(19a-8b\right)=0\)

                              \(\Leftrightarrow19a=8b\) (do \(a\ne-4b\) (2)

Từ (2) và do \(a^2+b^2\ne0\), chọn a=40, b=95 được phương trình đường thẳng AC cần tìm là \(40\left(x-\frac{6}{5}\right)+95\left(y-\frac{28}{5}\right)=0\) hay \(8x+19y-116=0\)

M là trung điểm của AB

=>\(\left\{{}\begin{matrix}x_A+x_B=2\cdot x_M=-2\\y_A+y_B=2\cdot y_M=-2\end{matrix}\right.\)(1)

N là trung điểm của BC

=>\(\left\{{}\begin{matrix}x_B+x_C=2\cdot x_N=2\\y_B+y_C=2\cdot y_N=2\cdot9=18\end{matrix}\right.\)(2)

P là trung điểm của AC

=>\(\left\{{}\begin{matrix}x_A+x_C=2\cdot9=18\\y_A+y_C=2\cdot1=2\end{matrix}\right.\)(3)

Từ (1),(2),(3) ta có hệ phương trình sau:

\(\left\{{}\begin{matrix}x_A+x_B=-2\\x_B+x_C=2\\x_C+x_A=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_A=-2-x_B\\x_C=2-x_B\\-2-x_B+2-x_B=18\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2x_B=18\\x_A=-2-x_B\\x_C=2-x_B\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_B=-9\\x_A=-2-\left(-9\right)=7\\x_C=2-\left(-9\right)=11\end{matrix}\right.\)

Từ (1),(2),(3) ta có hệ phương trình:

\(\left\{{}\begin{matrix}y_A+y_B=-2\\y_B+y_C=18\\y_A+y_C=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y_A=-2-y_B\\y_C=18-y_B\\-2-y_B+18-y_B=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2y_B=2+2-18=4-18=-14\\y_A=-2-y_B\\y_C=18-y_B\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y_B=7\\y_A=-2-7=-9\\y_C=18-7=11\end{matrix}\right.\)

vậy: A(7;-9); B(-9;7)

\(\overrightarrow{AB}=\left(-16;16\right)\)

=>VTPT là (16;16)=(1;1)

Phương trình đường thẳng AB là:

\(1\left(x-7\right)+1\left(y+9\right)=0\)

=>x-7+y+9=0

=>x+y+2=0

NV
11 tháng 1

\(\overrightarrow{NP}=\left(8;-8\right)=8\left(1;-1\right)\)

Do N, P lần lượt là trung điểm của BC, CA \(\Rightarrow\) NP là đường trung bình tam giác ABC

\(\Rightarrow NP||AB\Rightarrow\) đường thẳng AB nhận \(\left(1;1\right)\) là 1 vecto pháp tuyến

Phương trình AB qua M có dạng:

\(1\left(x+1\right)+1\left(y+1\right)=0\Leftrightarrow x+y+2=0\)

NV
5 tháng 3 2023

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y-2=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow A\left(3;1\right)\)

\(\left\{{}\begin{matrix}x_A+x_B+x_C=3x_G\\y_A+y_B+y_C=3y_G\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B+x_C=6\\y_B+y_C=5\end{matrix}\right.\) (1)

B thuộc AB nên: \(x_B-y_B=2\Rightarrow x_B=y_B+2\)

C thuộc AC nên: \(x_C+2y_C-5=0\Rightarrow x_C=-2y_C+5\)

Thế vào (1) \(\Rightarrow\left\{{}\begin{matrix}y_B+2-2y_C+5=6\\y_B+y_C=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_B=3\Rightarrow x_B=5\\y_C=2\Rightarrow x_C=1\end{matrix}\right.\)

Phương trình BC: \(\dfrac{x-5}{1-5}=\dfrac{y-3}{2-3}\Leftrightarrow x-4y+7=0\)