Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC vuông tại C, có phân giác AD với \(D\left(\dfrac{7}{2};-\dfrac{7}{2}\right)\) thuộc BC. Gọi E, F lần lượt thuộc các cạnh AB, AC sao cho \(AE=AF\). Đường thẳng EF cắt BC tại K. Biết E\(\left(\dfrac{3}{2};-\dfrac{5}{2}\right)\), F có hoành độ nhỏ hơn 3 và phương trình đường thẳng \(AK\) là \(x-2y-3=0\). Viết phương trình các cạnh tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B đối xứng với A qua I \(\Leftrightarrow I\) là trung điểm AB
\(\Rightarrow\left\{{}\begin{matrix}x_B=2x_I-x_A=9\\y_B=2y_I-y_A=4\end{matrix}\right.\) \(\Rightarrow B\left(9;4\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AC}=\left(3;y-3\right)\\\overrightarrow{BC}=\left(-4;y-4\right)\end{matrix}\right.\)
\(ABC\) vuông tại C \(\Leftrightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\)
\(\Leftrightarrow-12+\left(y-3\right)\left(y-4\right)=0\)
\(\Leftrightarrow...\)
\(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)
\(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\) nên \(AB\perp AC\). (1)
\(AB=\sqrt{2^2+2^2}=2\sqrt{2}\).
\(AC=\sqrt{2^2+\left(-2\right)^2}=2\sqrt{2}\)
Vì vậy AB = AC. (2)
Từ (1) và (2) suy ra tam giác ABC vuông cân tại A.
Từ hình vẽ thì hướng giải như sau:
Dễ dàng nhận ra \(DF\perp AK\), từ đó biết vtpt của DF \(\Rightarrow\) phương trình DF
\(\Rightarrow\) Tọa độ F (là giao của DF và đường tròn tâm D bán kính DE do DE=DF)
Biết tọa độ F \(\Rightarrow\) viết được pt AD qua D vuông góc EF
\(\Rightarrow\) Tọa độ A từ là giao AK và AD
\(\Rightarrow\) Phương trình AB qua A và E, phương trình AC qua A và F, phương trình BC qua D và vuông góc AF